Brownian¶
- class hoomd.md.methods.rattle.Brownian(filter, kT, manifold_constraint, tolerance=1e-06, default_gamma=1.0, default_gamma_r=(1.0, 1.0, 1.0))¶
Bases:
MethodRATTLE
Brownian dynamics with RATTLE constraint.
- Parameters:
filter (hoomd.filter.filter_like) – Subset of particles to apply this method to.
kT (hoomd.variant.variant_like) – Temperature of the simulation \([\mathrm{energy}]\).
manifold_constraint (hoomd.md.manifold.Manifold) – Manifold constraint.
tolerance (float) – Defines the tolerated error particles are allowed to deviate from the manifold in terms of the implicit function. The units of tolerance match that of the selected manifold’s implicit function. Defaults to 1e-6
default_gamma (float) – Default drag coefficient for all particle types \([\mathrm{mass} \cdot \mathrm{time}^{-1}]\).
default_gamma_r ([
float
,float
,float
]) – Default rotational drag coefficient tensor for all particles \([\mathrm{time}^{-1}]\).
Brownian
uses the same integrator ashoomd.md.methods.Brownian
, which follows the overdamped Langevin equations of motion with the additional force term \(- \lambda \vec{F}_\mathrm{M}\). The force \(\vec{F}_\mathrm{M}\) keeps the particles on the manifold constraint, where the Lagrange multiplier \(\lambda\) is calculated via the RATTLE algorithm. For more details about Brownian dynamics seehoomd.md.methods.Brownian
.Example
sphere = hoomd.md.manifold.Sphere(r=5) brownian_rattle = hoomd.md.methods.rattle.Brownian( filter=hoomd.filter.All(), kT=1.5, manifold_constraint=sphere, default_gamma=1.0, default_gamma_r=(1.0, 1.0, 1.0), ) simulation.operations.integrator.methods = [brownian_rattle]
Members inherited from
AutotunedObject
:- property kernel_parameters¶
Kernel parameters.
Read more...
- property is_tuning_complete¶
Check if kernel parameter tuning is complete.
Read more...
- tune_kernel_parameters()¶
Start tuning kernel parameters.
Read more...
Members inherited from
MethodRATTLE
:- manifold_constraint¶
Manifold constraint.
Read more...
- tolerance¶
Defines the tolerated error particles are allowed to deviate from the manifold in terms of the implicit function.
Read more...
Members defined in
Brownian
:- filter¶
Subset of particles to apply this method to.
- Type:
- kT¶
Temperature of the simulation \([\mathrm{energy}]\).
- Type: