Diamond¶
- class hoomd.md.manifold.Diamond(N, epsilon=0)¶
Bases:
Manifold
Triply periodic diamond manifold.
- Parameters:
Diamond
defines a periodic diamond surface . The diamond (or Schwarz D) belongs to the family of triply periodic minimal surfaces:\[F(x,y,z) = \cos{\frac{2 \pi}{B_x} x} \cdot \cos{\frac{2 \pi}{B_y} y} \cdot \cos{\frac{2 \pi}{B_z} z} - \sin{\frac{2 \pi}{B_x} x} \cdot \sin{\frac{2 \pi}{B_y} y} \cdot \sin{\frac{2 \pi}{B_z} z} - \epsilon\]is the nodal approximation of the diamond surface where \([B_x,B_y,B_z]\) is the periodicity length in the x, y and z direction. The periodicity length B is defined by the current box size L and the number of unit cells N \(B_i=\frac{L_i}{N_i}\).
Example:
diamond1 = manifold.Diamond(N=1) diamond2 = manifold.Diamond(N=(1, 2, 2))