Logging to a file

Overview

Questions

  • What is a Logger?

  • How can I write thermodynamic and other quantities to a file?

  • How can I access that data?

Objectives

  • Describe and give examples of loggable quantities.

  • Show how to add quantities to a Logger.

  • Demonstrate HDF5Log as a log writer.

  • Explain how to read logged quantities from HDF5 files.

  • Describe how namespaces appear in the names of the logged quantities.

Boilerplate Code

[1]:
import hoomd
import matplotlib

%matplotlib inline
matplotlib.style.use('ggplot')
import matplotlib_inline

matplotlib_inline.backend_inline.set_matplotlib_formats('svg')

Introduction

HOOMD separates logging into three parts: Loggable quantities, the Logger class, and Writers.

  • Loggable quantities are values computed during a simulation.

  • The Logger class provides a way to collect and name quantities of interest.

  • Writers write these values out in a format you can later use.

In this section, you will use the HDF5Log Writer to capture the values of quantities during a simulation run for later analysis.

Define the Simulation

This tutorial executes the Lennard-Jones particle simulation from a previous tutorial. See Introducing Molecular Dynamics for a complete description of this code.

[3]:
cpu = hoomd.device.CPU()
simulation = hoomd.Simulation(device=cpu, seed=1)
simulation.create_state_from_gsd(
    filename='../01-Introducing-Molecular-Dynamics/random.gsd'
)

integrator = hoomd.md.Integrator(dt=0.005)
cell = hoomd.md.nlist.Cell(buffer=0.4)
lj = hoomd.md.pair.LJ(nlist=cell)
lj.params[('A', 'A')] = dict(epsilon=1, sigma=1)
lj.r_cut[('A', 'A')] = 2.5
integrator.forces.append(lj)
nvt = hoomd.md.methods.ConstantVolume(
    filter=hoomd.filter.All(), thermostat=hoomd.md.methods.thermostats.Bussi(kT=1.5)
)
integrator.methods.append(nvt)
simulation.operations.integrator = integrator
simulation.run(0)

Loggable Quantities

Many classes in HOOMD-blue provide special properties called loggable quantities. For example, the Simulation class provides timestep, tps, and others. The reference documentation labels each of these as Loggable. You can also examine the loggables property to determine the loggable quantities:

[4]:
simulation.loggables
[4]:
{'timestep': 'scalar',
 'seed': 'scalar',
 'tps': 'scalar',
 'walltime': 'scalar',
 'final_timestep': 'scalar',
 'initial_timestep': 'scalar'}

The ThermodynamicQuantities class computes a variety of thermodynamic properties in MD simulations. These are all loggable.

[5]:
thermodynamic_properties = hoomd.md.compute.ThermodynamicQuantities(
    filter=hoomd.filter.All()
)
simulation.operations.computes.append(thermodynamic_properties)
thermodynamic_properties.loggables
[5]:
{'kinetic_temperature': 'scalar',
 'pressure': 'scalar',
 'pressure_tensor': 'sequence',
 'kinetic_energy': 'scalar',
 'translational_kinetic_energy': 'scalar',
 'rotational_kinetic_energy': 'scalar',
 'potential_energy': 'scalar',
 'degrees_of_freedom': 'scalar',
 'translational_degrees_of_freedom': 'scalar',
 'rotational_degrees_of_freedom': 'scalar',
 'num_particles': 'scalar',
 'volume': 'scalar'}

Loggable quantities are class properties or methods. You can directly access them in your code.

[6]:
simulation.timestep
[6]:
10000
[7]:
thermodynamic_properties.kinetic_temperature
[7]:
1.5950485725069867

Each loggable quantity has a category, which is listed both in the reference documentation and in loggables. The category is a string that identifies the quantity’s type or category. Example categories include: * scalar - numbers * sequence - arrays of numbers * string - strings of characters * particle - arrays of per-particle values

Add Quantities to a Logger

Add each of the quantities you would like to store to a Logger. The Logger will maintain these quantities in a list and provide them to the Writer when needed.

[8]:
logger = hoomd.logging.Logger(categories=['scalar', 'sequence'])

You can add loggable quantities from any number of objects to a Logger. Logger uses the namespace of the class to assign a unique name for each quantity. Call add to add all quantities provided by thermodynamic_properties:

[9]:
logger.add(thermodynamic_properties)

You can also select specific quantities to add with the quantities argument. Add only the timestep and walltime quantities from Simulation:

[10]:
logger.add(simulation, quantities=['timestep', 'walltime'])

Writing Log Quantities to a File

Use the HDF5Log writer to store the quantities provided by logger to a HDF5 (.h5) file.

[11]:
hdf5_writer = hoomd.write.HDF5Log(
    trigger=hoomd.trigger.Periodic(1000), filename='log.h5', mode='x', logger=logger
)
simulation.operations.writers.append(hdf5_writer)

The writer triggers and writes to the log file when the simulation runs:

[12]:
simulation.run(100_000)

Remove the writer from the simulation to close the file:

This step is not necessary in typical workflows where a simulation script writes a log file and exits before a later analysis script reads the file.

[13]:
simulation.operations.writers.remove(hdf5_writer)

Reading Logged Data From a HDF5 File

HDF5 is a binary file format. You must use tools that support the format to access the file. The HDF5 library provides command line tools to examine the file contents interactively. h5ls lists the datasets in the file:

In Jupyter, the “!” magic command is equivalent to typing the given command in a shell.

[14]:
!h5ls -r log.h5
/                        Group
/hoomd-data              Group
/hoomd-data/Simulation   Group
/hoomd-data/Simulation/timestep Dataset {100/Inf}
/hoomd-data/Simulation/walltime Dataset {100/Inf}
/hoomd-data/md           Group
/hoomd-data/md/compute   Group
/hoomd-data/md/compute/ThermodynamicQuantities Group
/hoomd-data/md/compute/ThermodynamicQuantities/degrees_of_freedom Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/kinetic_energy Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/kinetic_temperature Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/num_particles Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/potential_energy Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/pressure Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/pressure_tensor Dataset {100/Inf, 6}
/hoomd-data/md/compute/ThermodynamicQuantities/rotational_degrees_of_freedom Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/rotational_kinetic_energy Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/translational_degrees_of_freedom Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/translational_kinetic_energy Dataset {100/Inf}
/hoomd-data/md/compute/ThermodynamicQuantities/volume Dataset {100/Inf}

The datasets have verbose names that include the namespace of the class which computed the quantity, where . has been replaced with /. For example, access the potential energy computed by ThermodynamicQuantities with the key /hoomd-data/md/compute/ThermodynamicQuantities/potential_energy.

h5dump writes the contents of HDF5 files in a human readable form:

[15]:
!h5dump -d /hoomd-data/md/compute/ThermodynamicQuantities/potential_energy log.h5
HDF5 "log.h5" {
DATASET "/hoomd-data/md/compute/ThermodynamicQuantities/potential_energy" {
   DATATYPE  H5T_IEEE_F64LE
   DATASPACE  SIMPLE { ( 100 ) / ( H5S_UNLIMITED ) }
   DATA {
   (0): -549.5, -534.66, -562.199, -532.078, -521.426, -523.534, -573.096,
   (7): -552.695, -542.698, -549.952, -537.796, -541.976, -516.883, -558.729,
   (14): -575.244, -533.639, -525.093, -545.14, -545.206, -548.099, -521.61,
   (21): -544.652, -541.47, -522.255, -560.74, -535.493, -541.011, -551.586,
   (28): -538.912, -540.738, -523.334, -566.458, -535.875, -544.828,
   (34): -529.365, -562.823, -521.96, -546.935, -537.666, -541.428, -545.243,
   (41): -538.271, -543.778, -540.597, -544.284, -528.809, -530.586,
   (47): -558.172, -556.267, -541.073, -536.747, -536.548, -553.082,
   (53): -535.615, -559.795, -554.16, -556.978, -540.011, -542.222, -549.045,
   (60): -528.408, -574.476, -525.855, -523.335, -512.41, -531.369, -545.768,
   (67): -548.647, -538.825, -535.903, -530.557, -523.248, -536.899,
   (73): -536.948, -557.791, -513.761, -550.267, -533.411, -531.879, -541.27,
   (80): -556.931, -543.045, -549.697, -529.375, -559.298, -527.063,
   (86): -551.598, -534.454, -553.851, -551.05, -569.277, -549.779, -543.661,
   (93): -570.325, -543.95, -535.917, -537.359, -543.398, -548.67, -547.541
   }
}
}

Use the h5py package to read HDF5 files in Python:

[16]:
import h5py

hdf5_file = h5py.File(name='log.h5', mode='r')

Index into the file object similar to a dictionary:

[17]:
hdf5_file['hoomd-data/md/compute/ThermodynamicQuantities/potential_energy']
[17]:
<HDF5 dataset "potential_energy": shape (100,), type "<f8">

Access the dataset entries with a slice:

[18]:
hdf5_file['hoomd-data/md/compute/ThermodynamicQuantities/potential_energy'][:]
[18]:
array([-549.50004456, -534.65954933, -562.19940801, -532.07796683,
       -521.42631261, -523.53375423, -573.09643309, -552.6951781 ,
       -542.69799226, -549.95206692, -537.79572697, -541.97590863,
       -516.8829588 , -558.7288184 , -575.24413581, -533.63876624,
       -525.09271675, -545.14010356, -545.20552317, -548.09914698,
       -521.6095112 , -544.65210537, -541.47038337, -522.25454976,
       -560.73999882, -535.49296435, -541.01102005, -551.58613024,
       -538.91187621, -540.7380379 , -523.33390383, -566.45818603,
       -535.87523795, -544.82806967, -529.36498716, -562.82257838,
       -521.96022067, -546.93453583, -537.66567604, -541.4283643 ,
       -545.24312931, -538.27078084, -543.77810022, -540.59698295,
       -544.28380948, -528.80853503, -530.58576773, -558.17155034,
       -556.26674128, -541.07294335, -536.74691314, -536.54788188,
       -553.0819941 , -535.61504188, -559.79482215, -554.15950136,
       -556.97767311, -540.01119137, -542.22202165, -549.0446321 ,
       -528.4080119 , -574.47580671, -525.85533371, -523.3350728 ,
       -512.40962441, -531.36902843, -545.76824092, -548.64735658,
       -538.82525906, -535.90270233, -530.55745811, -523.24847973,
       -536.89906768, -536.94822722, -557.79082166, -513.76124053,
       -550.2673778 , -533.41064516, -531.87909127, -541.27022269,
       -556.93093863, -543.04475919, -549.69690034, -529.37517608,
       -559.29795882, -527.06287213, -551.59795638, -534.45413547,
       -553.85084572, -551.04973654, -569.27677786, -549.77853877,
       -543.66126138, -570.32462305, -543.94951699, -535.91735486,
       -537.35923424, -543.39821054, -548.67024335, -547.54149657])

Use a h5py dataset slice wherever you would normally use NumPy arrays. For example, plot the time series data:

[19]:
timestep = hdf5_file['hoomd-data/Simulation/timestep'][:]
potential_energy = hdf5_file[
    'hoomd-data/md/compute/ThermodynamicQuantities/potential_energy'
][:]

fig = matplotlib.figure.Figure(figsize=(5, 3.09))
ax = fig.add_subplot()
ax.plot(timestep, potential_energy)
ax.set_xlabel('timestep')
ax.set_ylabel('potential energy')
fig
[19]:
../../_images/tutorial_02-Logging_01-Logging-to-a-file_39_0.svg

HDF5Log writes sequence, particle, bond, etc… quantities in addition to scalers. For example, the pressure tensor is a 6 element array on each frame:

[22]:
hdf5_file['hoomd-data/md/compute/ThermodynamicQuantities/pressure_tensor'][0]
[22]:
array([ 0.14391669, -0.01012993, -0.04182644,  0.25004318,  0.00844331,
        0.30558124])

In this section, you have logged quantities to a file during a simulation run and analyzed that data as a time series. The next section of this tutorial shows you how to save per-particle quantities associated with specific system configurations.