Gyroid¶
- class hoomd.md.manifold.Gyroid(N, epsilon=0)¶
Bases:
Manifold
Triply periodic gyroid manifold.
- Parameters:
Gyroid
defines a periodic gyroid surface. The gyroid belongs to the family of triply periodic minimal surfaces:\[F(x,y,z) = \sin{\frac{2 \pi}{B_x} x} \cdot \cos{\frac{2 \pi}{B_y} y} + \sin{\frac{2 \pi}{B_y} y} \cdot \cos{\frac{2 \pi}{B_z} z} + \sin{\frac{2 \pi}{B_z} z} \cdot \cos{\frac{2 \pi}{B_x} x} - \epsilon\]is the nodal approximation of the diamond surface where \([B_x,B_y,B_z]\) is the periodicity length in the x, y and z direction. The periodicity length B is defined by the current box size L and the number of unit cells N \(B_i=\frac{L_i}{N_i}\).
Example:
gyroid1 = manifold.Gyroid(N=1) gyroid2 = manifold.Gyroid(N=(1, 2, 2))