Gyroid

class hoomd.md.manifold.Gyroid(N, epsilon=0)

Bases: Manifold

Triply periodic gyroid manifold.

Parameters:
  • N (tuple [int, int, int] or int) – number of unit cells in all 3 directions. [Nx,Ny,Nz][N_x, N_y, N_z]. In case number of unit cells u in all direction the same ([u,u,u][u, u, u]), use N = u.

  • epsilon (float) – defines CMC companion of the Gyroid surface (default 0)

Gyroid defines a periodic gyroid surface. The gyroid belongs to the family of triply periodic minimal surfaces:

F(x,y,z)=sin2πBxxcos2πByy+sin2πByycos2πBzz+sin2πBzzcos2πBxxϵF(x,y,z) = \sin{\frac{2 \pi}{B_x} x} \cdot \cos{\frac{2 \pi}{B_y} y} + \sin{\frac{2 \pi}{B_y} y} \cdot \cos{\frac{2 \pi}{B_z} z} + \sin{\frac{2 \pi}{B_z} z} \cdot \cos{\frac{2 \pi}{B_x} x} - \epsilon

is the nodal approximation of the diamond surface where [Bx,By,Bz][B_x,B_y,B_z] is the periodicity length in the x, y and z direction. The periodicity length B is defined by the current box size L and the number of unit cells N Bi=LiNiB_i=\frac{L_i}{N_i}.

Example:

gyroid1 = manifold.Gyroid(N=1)
gyroid2 = manifold.Gyroid(N=(1, 2, 2))