hpmc.external.field
Overview
Restrain particle positions and orientations with harmonic springs. |
Details
Apply external fields to HPMC simulations.
- class hoomd.hpmc.external.field.Harmonic(reference_positions, reference_orientations, k_translational, k_rotational, symmetries)
Restrain particle positions and orientations with harmonic springs.
- Parameters
reference_positions ((N_particles, 3)
numpy.ndarray
offloat
) – the reference positions to which particles are restrained \([\mathrm{length}]\).reference_orientations ((N_particles, 4)
numpy.ndarray
offloat
) – the reference orientations to which particles are restrained \([\mathrm{dimensionless}]\).k_translational (
hoomd.variant.Variant
orfloat
) – translational spring constant \([\mathrm{energy} \cdot \mathrm{length}^{-2}]\).k_rotational (
hoomd.variant.Variant
orfloat
) – rotational spring constant \([\mathrm{energy}]\).symmetries ((N_symmetries, 4)
numpy.ndarray
offloat
) – the orientations that are equivalent through symmetry, i.e., the rotation quaternions that leave the particles unchanged. At a minimum, the identity quaternion ([1, 0, 0, 0]
) must be included here \([\mathrm{dimensionless}]\).
Harmonic
specifies that harmonic springs are used to restrain the position and orientation of every particle:\[ \begin{align}\begin{aligned}\begin{split}V_\mathrm{translational} = \sum_i^{N_\mathrm{particles}} \frac{1}{2} k_{translational} \cdot (\vec{r}_i-\vec{r}_{0,i})^2 \\\end{split}\\V_\mathrm{rotational} = \sum_i^{N_\mathrm{particles}} \frac{1}{2} k_{rotational} \cdot \min_j \left[ (\mathbf{q}_i-\mathbf{q}_{0,i} \cdot \mathbf{q}_{\mathrm{symmetry},j})^2 \right]\end{aligned}\end{align} \]where \(k_{translational}\) and \(k_{rotational}\) correspond to the parameters
k_translational
andk_rotational
, respectively, \(\vec{r}_i\) and \(\mathbf{q}_i\) are the position and orientation of particle \(i\), the \(0\) subscripts denote the given reference quantities, and \(\mathbf{q}_{\mathrm{symmetry}}\) is the given set of symmetric orientations from thesymmetries
parameter.Note
Harmonic
does not support execution on GPUs.- k_translational
The translational spring constant \([\mathrm{energy} \cdot \mathrm{length}^{-2}]\).
- k_rotational
The rotational spring constant \([\mathrm{energy}]\).
- reference_positions
The reference positions to which particles are restrained \([\mathrm{length}]\).
- Type
(N_particles, 3)
numpy.ndarray
offloat
- reference_orientations
The reference orientations to which particles are restrained \([\mathrm{dimensionless}]\).
- Type
(N_particles, 4)
numpy.ndarray
offloat
- symmetries
The orientations that are equivalent through symmetry, i.e., the rotation quaternions that leave the particles unchanged \([\mathrm{dimensionless}]\).
- Type
(N_symmetries, 4)
numpy.ndarray
offloat
- property energy
The total energy of the harmonic field [mathrm{energy}]`.
\(V_\mathrm{translational} + V_\mathrm{rotational}\)
(
Loggable
: category=”scalar”)- Type