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HOOMD-blue is a general purpose particle simulation toolkit. It performs
hard particle Monte Carlo simulations of a variety of shape classes, and
molecular dynamics simulations of particles with a range of pair, bond, angle,
and other potentials. HOOMD-blue runs fast on NVIDIA GPUs, and can scale
across thousands of nodes. For more information, see the HOOMD-blue website [https://glotzerlab.engin.umich.edu/hoomd-blue/].


Resources


	GitHub Repository [https://github.com/glotzerlab/hoomd-blue]:
Source code and issue tracker.


	Installation Guide:
Instructions for installing and compiling HOOMD-blue.


	hoomd-users Google Group [https://groups.google.com/d/forum/hoomd-users]:
Ask questions to the HOOMD-blue community.


	HOOMD-blue Tutorial [https://nbviewer.jupyter.org/github/glotzerlab/hoomd-examples/blob/master/index.ipynb]:
Beginner’s guide, code examples, and sample scripts.


	HOOMD-blue website [https://glotzerlab.engin.umich.edu/hoomd-blue/]:
Additional information, benchmarks, and publications.






Job scripts

HOOMD-blue job scripts are Python scripts. You can control system
initialization, run protocols, analyze simulation data, or develop complex
workflows all with Python code in your job.

Here is a simple example:

import hoomd
from hoomd import md
hoomd.context.initialize()

# Create a 10x10x10 simple cubic lattice of particles with type name A
hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=2.0, type_name='A'), n=10)

# Specify Lennard-Jones interactions between particle pairs
nl = md.nlist.cell()
lj = md.pair.lj(r_cut=3.0, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

# Integrate at constant temperature
md.integrate.mode_standard(dt=0.005)
hoomd.md.integrate.langevin(group=hoomd.group.all(), kT=1.2, seed=4)

# Run for 10,000 time steps
hoomd.run(10e3)





Save this script as lj.py and run it with python lj.py (or
singularity exec software.simg python3 lj.py if using Singularity
containers).
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Installing binaries

HOOMD-blue binaries are available in the glotzerlab-software [https://glotzerlab-software.readthedocs.io]
Docker [https://hub.docker.com/]/Singularity [https://www.sylabs.io/] images and for Linux and macOS via the
hoomd package on conda-forge [https://anaconda.org/conda-forge/hoomd].


Singularity / Docker images

See the glotzerlab-software documentation [https://glotzerlab-software.readthedocs.io/] for container usage
information and cluster specific instructions.



Conda package

HOOMD-blue is available on conda-forge [https://conda-forge.org]. To
install, first download and install miniconda [https://docs.conda.io/en/latest/miniconda.html]. Then install hoomd
from the conda-forge channel:

$ conda install -c conda-forge hoomd








Compiling from source


Prerequisites

Compiling HOOMD-blue requires a number of software packages and libraries.


	Required:


	Python >= 3.5


	NumPy >= 1.7


	CMake >= 2.8.10.1


	C++11 capable compiler (tested with gcc 4.8, 5.4, 5.5, 6.4, 7,
8, 9, clang 5, 6, 7, 8)






	Optional:


	Git >= 1.7.0


	NVIDIA CUDA Toolkit >= 9.0


	Intel Threading Building Blocks >= 4.3


	MPI (tested with OpenMPI, MVAPICH)


	LLVM >= 5.0






	Useful developer tools


	Doxygen >= 1.8.5









Software prerequisites on clusters

Most cluster administrators provide versions of Git, Python, NumPy, MPI, and
CUDA as modules. You will need to consult the documentation or ask the system
administrators for instructions to load the appropriate modules.



Prerequisites on workstations

On a workstation, use the system’s package manager to install all of the
prerequisites. Some Linux distributions separate -dev and normal packages,
you need the development packages to build HOOMD-blue.

On macOS systems, you can use MacPorts [https://www.macports.org/] or
Homebrew [https://brew.sh/] to install prerequisites. You will need to
install Xcode (free) through the Mac App Store to supply the C++ compiler.



Installing prerequisites with conda


Caution

Using conda to provide build prerequisites is not recommended. Conda is
very useful as a delivery platform for stable binaries [http://glotzerlab.engin.umich.edu/hoomd-blue/download.html], but there
are many pitfalls when using it to provide development prerequisites.



Despite this warning, many users wish to use conda to provide those development
prerequisites. There are a few additional steps required to build
HOOMD-blue against a conda software stack, as you must ensure that all
libraries (MPI, Python, etc.) are linked from the conda environment. First,
install miniconda [https://docs.conda.io/en/latest/miniconda.html].
Then, uninstall the hoomd package if it is installed,
and install the prerequisite libraries and tools. On Linux or macOS, run:

conda install -c conda-forge sphinx git openmpi numpy cmake





After configuring, check the CMake configuration to ensure that it finds Python,
NumPy, and MPI from within the conda installation. If any of these library or
include files reference directories other than your conda environment, you will
need to set the appropriate setting for PYTHON_EXECUTABLE, etc.


Warning

On macOS, installing gcc with conda is not sufficient to build
HOOMD-blue. Update Xcode to the latest version using the Mac App
Store.






Compile HOOMD-blue

Download source releases directly from the web:
https://glotzerlab.engin.umich.edu/Downloads/hoomd

$ curl -O https://glotzerlab.engin.umich.edu/Downloads/hoomd/hoomd-v2.9.7.tar.gz





Or, clone using Git:

$ git clone --recursive https://github.com/glotzerlab/hoomd-blue





HOOMD-blue uses Git submodules. Either clone with the --recursive
option, or execute git submodule update --init to fetch the submodules.


Note

When using a shared (read-only) Python installation, such as a module on a
cluster, create a virtual environment [https://docs.python.org/3/library/venv.html] where you can install
HOOMD-blue:

python3 -m venv /path/to/new/virtual/environment --system-site-packages





Activate the environment before configuring and before executing
HOOMD-blue scripts:

source /path/to/new/virtual/environment/bin/activate







Configure:

$ cd hoomd-blue
$ mkdir build
$ cd build
$ cmake ../ -DCMAKE_INSTALL_PREFIX=`python3 -c "import site; print(site.getsitepackages()[0])"`





By default, HOOMD-blue configures a Release optimized build type for a
generic CPU architecture and with no optional libraries. Specify:

-DCMAKE_CXX_FLAGS=-march=native -DCMAKE_C_FLAGS=-march=native





(or the appropriate option for your compiler) to enable optimizations specific
to your CPU. Specify -DENABLE_CUDA=ON to compile code for the GPU (requires
CUDA) and -DENABLE_MPI=ON to enable parallel simulations with MPI.
Configure a performance optimized build:

$ cmake ../ -DCMAKE_INSTALL_PREFIX=`python3 -c "import site; print(site.getsitepackages()[0])"` -DCMAKE_CXX_FLAGS=-march=native -DCMAKE_C_FLAGS=-march=native -DENABLE_CUDA=ON -DENABLE_MPI=ON





See the build options section below for a full list of options.

Compile:

$ make -j4





Test your build (requires a GPU to pass if HOOMD-blue was built with CUDA support):

$ ctest






Attention

On a cluster, run ctest within a job on a GPU compute node.



To install HOOMD-blue into your Python environment, run:

make install






Build options

Here is a list of all the build options that can be changed by CMake. To
change these settings, navigate to the build directory and run:

$ ccmake .





After changing an option, press c to configure, then press g to
generate. The Makefile is now updated with the newly selected
options. You can also set these parameters on the command line with
cmake:

cmake $HOME/devel/hoomd -DENABLE_CUDA=ON





Options that specify library versions only take effect on a clean invocation of
CMake. To set these options, first remove CMakeCache.txt and then run CMake
and specify these options on the command line:


	PYTHON_EXECUTABLE - Specify which python to build against. Example: /usr/bin/python3.


	Default: python3.X detected on $PATH






	CUDA_TOOLKIT_ROOT_DIR - Specify the root direction of the CUDA installation.


	Default: location of nvcc detected on $PATH






	MPI_HOME (env var) - Specify the location where MPI is installed.


	Default: location of mpicc detected on the $PATH








Other option changes take effect at any time. These can be set from within
ccmake or on the command line:


	CMAKE_INSTALL_PREFIX - Directory to install the hoomd Python module.
All files will be under ${CMAKE_INSTALL_PREFIX}/hoomd.


	BUILD_CGCMM - Enables building the hoomd.cgcmm module.


	BUILD_DEPRECATED - Enables building the hoomd.deprecated module.


	BUILD_HPMC - Enables building the hoomd.hpmc module.


	BUILD_MD - Enables building the hoomd.md module.


	BUILD_METAL - Enables building the hoomd.metal module.


	BUILD_TESTING - Enables the compilation of unit tests.


	CMAKE_BUILD_TYPE - Sets the build type (case sensitive) Options:


	Debug - Compiles debug information into the library and executables.
Enables asserts to check for programming mistakes. HOOMD-blue will run
slow when compiled in Debug mode, but problems are easier to identify.


	RelWithDebInfo - Compiles with optimizations and debug symbols.
Useful for profiling benchmarks.


	Release - (default) All compiler optimizations are enabled and
asserts are removed. Recommended for production builds: required for any
benchmarking.






	ENABLE_CUDA - Enable compiling of the GPU accelerated computations. Default: OFF.


	ENABLE_DOXYGEN - Enables the generation of developer documentation
Default: OFF.


	SINGLE_PRECISION - Controls precision. Default: OFF.


	When set to ON, all calculations are performed in single precision.


	When set to OFF, all calculations are performed in double precision.






	ENABLE_HPMC_MIXED_PRECISION - Controls mixed precision in the hpmc
component. When on, single precision is forced in expensive shape overlap
checks.


	ENABLE_MPI - Enable multi-processor/GPU simulations using MPI.


	When set to ON, multi-processor/multi-GPU simulations are supported.


	When set to OFF (the default), always run in single-processor/single-GPU mode.






	ENABLE_MPI_CUDA - Enable CUDA-aware MPI library support.


	Requires a MPI library with CUDA support to be installed.


	When set to ON (default if a CUDA-aware MPI library is detected),
HOOMD-blue will make use of the capability of the MPI library to
accelerate CUDA-buffer transfers.


	When set to OFF, standard MPI calls will be used.


	Warning: Manually setting this feature to ON when the MPI library
does not support CUDA may cause HOOMD-blue to crash.






	ENABLE_TBB - Enable support for Intel’s Threading Building Blocks (TBB).


	Requires TBB to be installed.


	When set to ON, HOOMD will use TBB to speed up calculations in some
classes on multiple CPU cores.






	UPDATE_SUBMODULES - When ON (the default), CMake will execute
git submodule update --init whenever it runs.


	COPY_HEADERS - When ON (OFF is default), copy header files into
the build directory to make it a valid plugin build source.




These options control CUDA compilation:


	CUDA_ARCH_LIST - A semicolon-separated list of GPU architectures to
compile in.


	NVCC_FLAGS - Allows additional flags to be passed to nvcc.









          

      

      

    

  

    
      
          
            
  
Change Log


v2.x


v2.9.7 (2021-08-03)

Bug fixes


	Support CUDA 11.5. A bug in CUDA 11.4 may result in the error
__global__ function call is not configure when running HOOMD.






v2.9.6 (2021-03-16)

Bug fixes


	Support TBB 2021.






v2.9.5 (2021-03-15)

Bug fixes


	Support macos-arm64.


	Support TBB 2021.


	Fix memory leak in PPPM.






v2.9.4 (2021-02-05)

Bug fixes


	Support thrust 1.10


	Support LLVM11


	Fix Python syntax warnings


	Fix compile errors with gcc 10






v2.9.3 (2020-08-05)

Bug fixes


	Fix a compile error with CUDA 11






v2.9.2 (2020-06-26)

Bug fixes


	Fix a bug where repeatedly using objects with period=None would use
significant amounts of memory.


	Support CUDA 11.


	Reccomend citing the 2020 Computational Materials Science paper
10.1016/j.commatsci.2019.109363.






v2.9.1 (2020-05-28)

Bug fixes


	Fixed a minor bug where the variable period timestep would be off by one when
the timestep got sufficiently large.


	Updated collections API to hide DeprecationWarning.


	Fix scaling of cutoff in Gay-Berne potential to scale the current maximum
distance based on the orientations of the particles, ensuring ellipsoidal
energy isocontours.


	Misc documentation fixes.






v2.9.0 (2020-02-03)

New features


	General


	Read and write GSD 2.0 files.


	HOOMD >=2.9 can read and write GSD files created by HOOMD <= 2.8 or GSD
1.x. HOOMD <= 2.8 cannot read GSD files created by HOOMD >=2.9 or GSD >=
2.0.


	OVITO >=3.0.0-dev652 reads GSD 2.0 files.


	A future release of the gsd-vmd plugin will read GSD 2.0 files.










	HPMC


	User-settable parameters in jit.patch.


	2D system support in muVT updater.


	Fix bug in HPMC where overlaps were not checked after adding new particle
types.






	MD


	The performance of nlist.tree has been drastically improved for a
variety of systems.










v2.8.2 (2019-12-20)

Bug fixes


	Fix randomization of barostat and thermostat velocities with
randomize_velocities() for non-unit temperatures.


	Improve MPCD documentation.


	Fix uninitialized memory in some locations which could have led to
unreproducible results with HPMC in MPI, in particular with
ALWAYS_USE_MANAGED_MEMORY=ON.


	Fix calculation of cell widths in HPMC (GPU) and nlist.cell() with MPI.


	Fix potential memory-management issue in MPI for migrating MPCD particles and
cell energy.


	Fix bug where exclusions were sometimes ignored when charge.pppm() is
the only potential using the neighbor list.


	Fix bug where exclusions were not accounted for properly in the
pppm_energy log quantity.


	Fix a bug where MD simulations with MPI start off without a ghost layer,
leading to crashes or dangerous builds shortly after run().


	hpmc.update.remove_drift now communicates particle positions after
updating them.






v2.8.1 (2019-11-26)

Bug fixes


	Fix a rare divide-by-zero in the collide.srd thermostat.


	Improve performance of first frame written by dump.gsd.


	Support Python 3.8.


	Fix an error triggering migration of embedded particles for MPCD with MPI +
GPU configurations.






v2.8.0 (2019-10-30)

New Features


	MD:


	hoomd.md.dihedral.harmonic now accepts phase offsets, phi_0, for CHARMM-style periodic dihedrals.


	Enable per-type shape information for anisotropic pair potentials that complements the existing pair parameters struct.






	HPMC:


	Enable the use of an array with adjustable parameters within the user defined pair potential.


	Add muVT updater for 2D systems.








Bug fixes


	Fix missing header in external plugin builds.


	Enable couple='none' option to md.integrate.npt() when randomly initializing velocities.


	Documentation improvements.


	Skip gsd shape unit test when required modules are not compiled.


	Fix default particle properties when new particles are added to the system (e.g., via the muVT updater).


	Fix charge.pppm() execution on multiple GPUs.


	Enable with SimulationContext() as c.


	Fix a bug for mpcd.collide.at with embedded particles, which may have given incorrect results or simulation crashes.






v2.7.0 (2019-10-01)

New features


	General:


	Allow components to use Logger at the C++ level.


	Drop support for python 2.7.


	User-defined log quantities in dump.gsd.


	Add hoomd.dump.gsd.dump_shape to save particle shape information in GSD files.






	HPMC:


	Add get_type_shapes to ellipsoid.






	MPCD:


	mpcd.stream.slit_pore allows for simulations through parallel-plate (lamellar) pores.


	mpcd.integrate supports integration of MD (solute) particles with bounce-back rules in MPCD streaming geometries.








Bug fixes


	hoomd.hdf5.log.query works with matrix quantities.


	test_group_rigid.py is run out of the md module.


	Fix a bug in md.integrate.langevin() and md.integrate.bd() where on the GPU the value of gamma would be ignored.


	Fix documentation about interoperability between md.mode_minimize_fire() and MPI.


	Clarify dump.gsd documentation.


	Improve documentation of lattice_field and frenkel_ladd_energy classes.


	Clarify singularity image download documentation.


	Correctly document the functional form of the Buckingham pair potential.


	Correct typos in HPMC example snippets.


	Support compilation in WSL.






v2.6.0 (2019-05-28)

New features


	General:


	Enable HPMC plugins.


	Fix plug-in builds when ENABLE_TBB or ALWAYS_USE_MANAGED_MEMORY CMake parameters are set.


	Remove support for compute 3.0 GPUs.


	Report detailed CUDA errors on initialization.


	Document upcoming feature removals and API changes.






	MD:


	Exclude neighbors that belong to the same floppy molecule.


	Add fourier potential.






	HPMC:


	New shape class: hpmc.integrate.faceted_ellipsoid_union().


	Store the orientable shape state.






	MPCD:


	mpcd.stream.slit allows for simulations in parallel-plate channels. Users can implement other geometries as a plugin.


	MPCD supports virtual particle filling in bounded geometries through the set_filler method of mpcd.stream classes.


	mpcd.stream includes an external mpcd.force acting on the MPCD particles. A block force, a constant force, and a sine force are implemented.








Bug fixes


	Fix compile errors with LLVM 8 and -DBUILD_JIT=on.


	Allow simulations with 0 bonds to specify bond potentials.


	Fix a problem where HOOMD could not be imported in mpi4py jobs.


	Validate snapshot input in restore_snapshot.


	Fix a bug where rigid body energy and pressure deviated on the first time step after run().


	Fix a bug which could lead to invalid MPI simulations with nlist.cell() and nlist.stencil().




C++ API changes


	Refactor handling of MPI_Comm inside library


	Use random123 for random number generation


	CMake version 2.8.10.1 is now a minimum requirement for compiling from source






v2.5.2 (2019-04-30)

Bug fixes


	Support LLVM 9 in jit


	Fix error when importing jit before hpmc


	HPMC integrators raise errors when restore_state=True and state information is missing


	Send messages to replaced sys.stdout and sys.stderr streams


	Add hpmc.update.clusters to documentation index


	Fix a bug in the MPCD Gaussian random number generator that could lead to NaN values


	Fix issue where an initially cubic box can become non-cubic with integrate.npt() and randomize_velocities()


	Fix illegal memory access in NeighborListGPU with -DALWAYS_USE_MANAGED_MEMORY=ON on single GPUs


	Improve pair.table performance with multi-GPU execution


	Improve charge.pppm performance with multi-GPU execution


	Improve rigid body performance with multi-GPU execution


	Display correct cell list statistics with the -DALWAYS_USE_MANAGED_MEMORY=ON compile option


	Fix a sporadic data corruption / bus error issue when data structures are dynamically resized in simulations that use unified memory (multi-GPU, or with -DALWAYS_USE_MANAGED_MEMORY=ON compile time option)


	Improve integrate.nve and integrate.npt performance with multi-GPU execution


	Improve some angular degrees of freedom integrators with multi-GPU execution


	Improve rigid body pressure calculation performance with multi-GPU execution






v2.5.1 (2019-03-14)

Bug fixes


	fix out-of-range memory access in hpmc.integrate.convex_polyheron


	Remove support for clang3.8 and 4.0


	Documentation improvements


	Fix a segfault when using SLURM_LOCALID






v2.5.0 (2019-02-05)

New features


	General:


	Fix BondedGroupData and CommunicatorGPU compile errors in certain
build configurations






	MD:


	Generalize md.integrate.brownian and md.integrate.langevin
to support anisotropic friction coefficients for rotational
Brownian motion.


	Improve NVLINK performance with rigid bodies


	randomize_velocities now chooses random values for the
internal integrator thermostat and barostat variables.


	get_net_force returns the net force on a group of particles
due to a specific force compute






	HPMC:


	Fix a bug where external fields were ignored with the HPMC
implicit integrator unless a patch potential was also in use.






	JIT:


	Add jit.external.user to specify user-defined external fields
in HPMC.


	Use -DHOOMD_LLVMJIT_BUILD now instead of -DHOOMD_NOPYTHON










v2.4.2 (2018-12-20)

Bug fixes


	Miscellaneous documentation updates


	Fix compile error with with -DALWAYS_USE_MANAGED_MEMORY=ON


	Fix MuellerPlatheFlow, cast input parameter to int to avoid C++
constructor type mismatch


	Improve startup time with multi-GPU simulations


	Correctly assign GPUs to MPI processes on Summit when launching with
more than one GPU per resource set


	Optimize multi-GPU performance with NVLINK


	Do not use mapped memory with MPI/GPU anymore


	Fix some cases where a multi-GPU simulation fails with an alignment
error


	Eliminate remaining instance of unsafe __shfl


	Hide CMake warnings regarding missing CPU math libraries


	Hide CMake warning regarding missing MPI<->CUDA interoperability


	Refactor memory management to fix linker errors with some compilers




C++ API Changes


	May break some plug-ins which rely on GPUArray data type being
returned from ParticleData and other classes (replace by
GlobalArray)






v2.4.1 (2018-11-27)

Bug fixes


	Install WarpTools.cuh for use by plugins


	Fix potential violation of detailed balance with anisotropic
particles with hpmc.update.clusters in periodic boundary
conditions


	Support llvm 7.0






v2.4.0 (2018-11-07)

New features


	General:


	Misc documentation updates


	Accept mpi4py communicators in context.initialize.


	CUDA 10 support and testing


	Sphinx 1.8 support


	Flush message output so that python -u is no longer required
to obtain output on some batch job systems


	Support multi-GPU execution on dense nodes using CUDA managed
memory. Execute with --gpu=0,1,..,n-1 command line option to
run on the first n GPUs (Pascal and above).


	Node-local acceleration is implemented for a subset of kernels.
Performance improvements may vary.


	Improvements are only expected with NVLINK hardware. Use MPI
when NVLINK is not available.


	Combine the --gpu=.. command line option with mpirun to
execute on many dense nodes






	Bundle libgetar v0.7.0 and remove sqlite3 dependency


	When building with ENABLE_CUDA=on, CUDA 8.0 is now a minimum
requirement






	MD:


	no changes.






	HPMC:


	Add convex_spheropolyhedron_union shape class.


	Correctly count acceptance rate when maximum particle move is is
zero in hpmc.integrate.*.


	Correctly count acceptance rate when maximum box move size is zero
in hpmc.update.boxmc.


	Fix a bug that may have led to overlaps between polygon soups with
hpmc.integrate.polyhedron.


	Improve performance in sphere trees used in
hpmc.integrate.sphere_union.


	Add test_overlap method to python API






	API:


	Allow external callers of HOOMD to set the MPI communicator


	Removed all custom warp reduction and scan operations. These are
now performed by CUB.


	Separate compilation of pair potentials into multiple files.


	Removed compute 2.0 workaround implementations. Compute 3.0 is now
a hard minimum requirement to run HOOMD.


	Support and enable compilation for sm70 with CUDA 9 and newer.






	Deprecated:


	HPMC: The implicit depletant mode circumsphere with
ntrial > 0 does not support compute 7.0 (Volta) and newer GPUs
and is now disabled by default. To enable this functionality,
configure HOOMD with option the -DENABLE_HPMC_REINSERT=ON,
which will not function properly on compute 7.0 (Volta) and newer
GPUs.


	HPMC: convex_polyhedron_union is replaced by
convex_spheropolyhedron_union (when sweep_radii are 0 for all
particles)










v2.3.5 (2018-10-07)

Bug fixes


	Document --single-mpi command line option.


	HPMC: Fix a bug where hpmc.field.lattice_field did not resize 2D
systems properly in combination with update.box_resize.






v2.3.4 (2018-07-30)

Bug fixes


	init.read_gsd no longer applies the time_step override when
reading the restart file


	HPMC: Add hpmc_patch_energy and hpmc_patch_rcut loggable
quantities to the documentation






v2.3.3 (2018-07-03)

Bug fixes


	Fix libquickhull.so not found regression on Mac OS X






v2.3.2 (2018-06-29)

Bug fixes


	Fix a bug where gsd_snapshot would segfault when called without an
execution context.


	Compile warning free with gcc8.


	Fix compile error when TBB include files are in non-system directory.


	Fix libquickhull.so not found error on additional platforms.


	HOOMD-blue is now available on conda-forge and the docker
hub.


	MPCD: Default value for kT parameter is removed for
mpcd.collide.at. Scripts that are correctly running are not
affected by this change.


	MPCD: mpcd notifies the user of the appropriate citation.


	MD: Correct force calculation between dipoles and point charge in
pair.dipole




Deprecated


	The anaconda channel glotzer will no longer be updated. Use
conda-forge to upgrade to v2.3.2 and newer versions.






v2.3.1 (2018-05-25)

Bug fixes


	Fix doxygen documentation syntax errors


	Fix libquickhull.so not found error on some platforms


	HPMC: Fix bug that allowed particles to pas through walls


	HPMC: Check spheropolyhedra with 0 vertices against walls correctly


	HPMC: Fix plane wall/spheropolyhedra overlap test


	HPMC: Restore detailed balance in implicit depletant integrator


	HPMC: Correctly choose between volume and lnV moves in
hpmc.update.boxmc


	HPMC: Fix name of log quantity hpmc_clusters_pivot_acceptance


	MD: Fix image list for tree neighbor lists in 2d






v2.3.0 (2018-04-25)

New features


	General:


	Store BUILD_* CMake variables in the hoomd cmake cache for use
in external plugins.


	init.read_gsd and data.gsd_snapshot now accept negative
frame indices to index from the end of the trajectory.


	Faster reinitialization from snapshots when done frequently.


	New command line option --single-mpi allows non-mpi builds of
hoomd to launch within mpirun (i.e. for use with mpi4py managed
pools of jobs)


	For users of the University of Michigan Flux system: A --mode
option is no longer required to run hoomd.






	MD:


	Improve performance with md.constrain.rigid in multi-GPU
simulations.


	New command integrator.randomize_velocities() sets a particle
group’s linear and angular velocities to random values consistent
with a given kinetic temperature.


	md.force.constant() now supports setting the force per
particle and inside a callback






	HPMC:


	Enabled simulations involving spherical walls and convex
spheropolyhedral particle shapes.


	Support patchy energetic interactions between particles (CPU only)


	New command hpmc.update.clusters() supports geometric cluster
moves with anisotropic particles and/or depletants and/or patch
potentials. Supported move types: pivot and line reflection
(geometric), and AB type swap.






	JIT:


	Add new experimental jit module that uses LLVM to compile and
execute user provided C++ code at runtime. (CPU only)


	Add jit.patch.user: Compute arbitrary patch energy between
particles in HPMC (CPU only)


	Add jit.patch.user_union: Compute arbitrary patch energy
between rigid unions of points in HPMC (CPU only)


	Patch energies operate with implicit depletant and normal HPMC
integration modes.


	jit.patch.user_union operates efficiently with additive
contributions to the cutoff.






	MPCD:


	The mpcd component adds support for simulating hydrodynamics
using the multiparticle collision dynamics method.








Beta feature


	Node local parallelism (optional, build with ENABLE_TBB=on):


	The Intel TBB library is required to enable this feature.


	The command line option --nthreads limits the number of
threads HOOMD will use. The default is all CPU cores in the
system.


	Only the following methods in HOOMD will take advantage of
multiple threads:


	hpmc.update.clusters()


	HPMC integrators with implicit depletants enabled


	jit.patch.user_union












Node local parallelism is still under development. It is not enabled in
builds by default and only a few methods utilize multiple threads. In
future versions, additional methods in HOOMD may support multiple
threads.

To ensure future workflow compatibility as future versions enable
threading in more components, explicitly set –nthreads=1.

Bug fixes


	Fixed a problem with periodic boundary conditions and implicit
depletants when depletant_mode=circumsphere


	Fixed a rare segmentation fault with hpmc.integrate.*_union() and
hpmc.integrate.polyhedron


	md.force.active and md.force.dipole now record metadata
properly.


	Fixed a bug where HPMC restore state did not set ignore flags
properly.


	hpmc_boxmc_ln_volume_acceptance is now available for logging.




Other changes


	Eigen is now provided as a submodule. Plugins that use Eigen headers
need to update include paths.


	HOOMD now builds with pybind 2.2. Minor changes to source and cmake
scripts in plugins may be necessary. See the updated example plugin.


	HOOMD now builds without compiler warnings on modern compilers (gcc6,
gcc7, clang5, clang6).


	HOOMD now uses pybind11 for numpy arrays instead of num_util.


	HOOMD versions v2.3.x will be the last available on the anaconda
channel glotzer.






v2.2.5 (2018-04-20)

Bug fixes


	Pin cuda compatible version in conda package to resolve libcu*.so
not found errors in conda installations.






v2.2.4 (2018-03-05)

Bug fixes


	Fix a rare error in md.nlist.tree when particles are very close
to each other.


	Fix deadlock when init.read_getar is given different file names
on different ranks.


	Sample from the correct uniform distribution of depletants in a
sphere cap with depletant_mode='overlap_regions' on the CPU


	Fix a bug where ternary (or higher order) mixtures of small and large
particles were not correctly handled with
depletant_mode='overlap_regions' on the CPU


	Improve acceptance rate in depletant simulations with
depletant_mode='overlap_regions'






v2.2.3 (2018-01-25)

Bug fixes


	Write default values to gsd frames when non-default values are
present in frame 0.


	md.wall.force_shifted_lj now works.


	Fix a bug in HPMC where run() would not start after
restore_state unless shape parameters were also set from python.


	Fix a bug in HPMC Box MC updater where moves were attempted with zero
weight.


	dump.gsd() now writes hpmc shape state correctly when there
are multiple particle types.


	hpmc.integrate.polyhedron() now produces correct results on the
GPU.


	Fix binary compatibility across python minor versions.






v2.2.2 (2017-12-04)

Bug fixes


	md.dihedral.table.set_from_file now works.


	Fix a critical bug where forces in MPI simulations with rigid bodies
or anisotropic particles were incorrectly calculated


	Ensure that ghost particles are updated after load balancing.


	meta.dump_metadata no longer reports an error when used with
md.constrain.rigid


	Miscellaneous documentation fixes


	dump.gsd can now write GSD files with 0 particles in a frame


	Explicitly report MPI synchronization delays due to load imbalance
with profile=True


	Correctly compute net torque of rigid bodies with anisotropic
constituent particles in MPI execution on multiple ranks


	Fix PotentialPairDPDThermoGPU.h for use in external plugins


	Use correct ghost region with constrain.rigid in MPI execution on
multiple ranks


	hpmc.update.muvt() now works with
depletant_mode='overlap_regions'


	Fix the sampling of configurations with in hpmc.update.muvt with
depletants


	Fix simulation crash after modifying a snapshot and re-initializing
from it


	The pressure in simulations with rigid bodies
(md.constrain.rigid()) and MPI on multiple ranks is now computed
correctly






v2.2.1 (2017-10-04)

Bug fixes


	Add special pair headers to install target


	Fix a bug where hpmc.integrate.convex_polyhedron,
hpmc.integrate.convex_spheropolyhedron,
hpmc.integrate.polyedron, hpmc.integrate.faceted_sphere,
hpmc.integrate.sphere_union and
hpmc.integrate.convex_polyhedron_union produced spurious overlaps
on the GPU






v2.2.0 (2017-09-08)

New features


	General:


	Add hoomd.hdf5.log to log quantities in hdf5 format. Matrix
quantities can be logged.


	dump.gsd can now save internal state to gsd files. Call
dump_state(object) to save the state for a particular object.
The following objects are supported:


	HPMC integrators save shape and trial move size state.






	Add dynamic argument to hoomd.dump.gsd to specify which
quantity categories should be written every frame.


	HOOMD now inter-operates with other python libraries that set the
active CUDA device.


	Add generic capability for bidirectional ghost communication,
enabling multi body potentials in MPI simulation.






	MD:


	Added support for a 3 body potential that is harmonic in the local
density.


	force.constant and force.active can now apply torques.


	quiet option to nlist.tune to quiet the output of the
embedded run() commands.


	Add special pairs as exclusions from neighbor lists.


	Add cosine squared angle potential md.angle.cosinesq.


	Add md.pair.DLVO() for evaluation of colloidal dispersion and
electrostatic forces.


	Add Lennard-Jones 12-8 pair potential.


	Add Buckingham (exp-6) pair potential.


	Add Coulomb 1-4 special_pair potential.


	Check that composite body dimensions are consistent with minimum
image convention and generate an error if they are not.


	md.integrate.mode.minimize_fire() now supports anisotropic
particles (i.e. composite bodies)


	md.integrate.mode.minimize_fire() now supports flexible
specification of integration methods


	md.integrate.npt()/md.integrate.nph() now accept a friction
parameter (gamma) for damping out box fluctuations during
minimization runs


	Add new command integrate.mode_standard.reset_methods() to
clear NVT and NPT integrator variables






	HPMC:


	hpmc.integrate.sphere_union() takes new capacity parameter to
optimize performance for different shape sizes


	hpmc.integrate.polyhedron() takes new capacity parameter to
optimize performance for different shape sizes


	hpmc.integrate.convex_polyhedron and
convex_spheropolyhedron now support arbitrary numbers of
vertices, subject only to memory limitations (max_verts is now
ignored).


	HPMC integrators restore state from a gsd file read by
init.read_gsd when the option restore_state is True.


	Deterministic HPMC integration on the GPU (optional):
mc.set_params(deterministic=True).


	New hpmc.update.boxmc.ln_volume() move allows logarithmic
volume moves for fast equilibration.


	New shape: hpmc.integrate.convex_polyhedron_union performs
simulations of unions of convex polyhedra.


	hpmc.field.callback() now enables MC energy evaluation in a
python function


	The option depletant_mode='overlap_regions' for
hpmc.integrate.* allows the selection of a new depletion
algorithm that restores the diffusivity of dilute colloids in
dense depletant baths








Deprecated


	HPMC: hpmc.integrate.sphere_union() no longer needs the
max_members parameter.


	HPMC: hpmc.integrate.convex_polyhedron and
convex_spheropolyhedron no longer needs the max_verts
parameter.


	The static argument to hoomd.dump.gsd should no longer be used.
Use dynamic instead.




Bug fixes


	HPMC:


	hpmc.integrate.sphere_union() and
hpmc.integrate.polyhedron() missed overlaps.


	Fix alignment error when running implicit depletants on GPU with
ntrial > 0.


	HPMC integrators now behave correctly when the user provides
different RNG seeds on different ranks.


	Fix a bug where overlapping configurations were produced with
hpmc.integrate.faceted_sphere()






	MD:


	charge.pppm() with order=7 now gives correct results


	The PPPM energy for particles excluded as part of rigid bodies now
correctly takes into account the periodic boundary conditions






	EAM:


	metal.pair.eam now produces correct results.








Other changes


	Optimized performance of HPMC sphere union overlap check and
polyhedron shape


	Improved performance of rigid bodies in MPI simulations


	Support triclinic boxes with rigid bodies


	Raise an error when an updater is given a period of 0


	Revised compilation instructions


	Misc documentation improvements


	Fully document constrain.rigid


	-march=native is no longer set by default (this is now a
suggestion in the documentation)


	Compiler flags now default to CMake defaults


	ENABLE_CUDA and ENABLE_MPI CMake options default OFF. User
must explicitly choose to enable optional dependencies.


	HOOMD now builds on powerpc+CUDA platforms (tested on summitdev)


	Improve performance of GPU PPPM force calculation


	Use sphere tree to further improve performance of
hpmc.integrate.sphere_union()






v2.1.9 (2017-08-22)

Bug fixes


	Fix a bug where the log quantity momentum was incorrectly
reported in MPI simulations.


	Raise an error when the user provides inconsistent charge or
diameter lists to md.constrain.rigid.


	Fix a bug where pair.compute_energy() did not report correct
results in MPI parallel simulations.


	Fix a bug where make rigid bodies with anisotropic constituent
particles did not work on the GPU.


	Fix hoomd compilation after the rebase in the cub repository.


	deprecated.dump.xml() now writes correct results when particles
have been added or deleted from the simulation.


	Fix a critical bug where charge.pppm() calculated invalid forces
on the GPU






v2.1.8 (2017-07-19)

Bug fixes


	init.read_getar now correctly restores static quantities when
given a particular frame.


	Fix bug where many short calls to run() caused incorrect results
when using md.integrate.langevin.


	Fix a bug in the Saru pseudo-random number generator that caused some
double-precision values to be drawn outside the valid range [0,1) by
a small amount. Both floats and doubles are now drawn on [0,1).


	Fix a bug where coefficients for multi-character unicode type names
failed to process in Python 2.




Other changes


	The Saru generator has been moved into hoomd/Saru.h, and plugins
depending on Saru or SaruGPU will need to update their includes. The
SaruGPU class has been removed. Use hoomd::detail::Saru
instead for both CPU and GPU plugins.






v2.1.7 (2017-05-11)

Bug fixes


	Fix PPM exclusion handling on the CPU


	Handle r_cut for special pairs correctly


	Fix tauP reference in NPH documentation


	Fixed constrain.rigid on compute 5.x.


	Fixed random seg faults when using sqlite getar archives with LZ4
compression


	Fixed XZ coupling with hoomd.md.integrate.npt integration


	Fixed aspect ratio with non-cubic boxes in
hoomd.hpmc.update.boxmc






v2.1.6 (2017-04-12)

Bug fixes


	Document hpmc.util.tune_npt


	Fix dump.getar.writeJSON usage with MPI execution


	Fix a bug where integrate.langevin and integrate.brownian correlated
RNGs between ranks in multiple CPU execution


	Bump CUB to version 1.6.4 for improved performance on Pascal
architectures. CUB is now embedded using a git submodule. Users
upgrading existing git repositories should reinitialize their git
submodules with git submodule update --init


	CMake no longer complains when it finds a partial MKL installation.






v2.1.5 (2017-03-09)

Bug fixes


	Fixed a compile error on Mac






v2.1.4 (2017-03-09)

Bug fixes


	Fixed a bug re-enabling disabled integration methods


	Fixed a bug where adding particle types to the system failed for
anisotropic pair potentials


	scipy is no longer required to execute DEM component unit tests


	Issue a warning when a subsequent call to context.initialize is given
different arguments


	DPD now uses the seed from rank 0 to avoid incorrect simulations when
users provide different seeds on different ranks


	Miscellaneous documentation updates


	Defer initialization message until context.initialize


	Fixed a problem where a momentary dip in TPS would cause walltime
limited jobs to exit prematurely


	HPMC and DEM components now correctly print citation notices






v2.1.3 (2017-02-07)

Bug fixes


	Fixed a bug where the WalltimeLimitReached was ignored






v2.1.2 (2017-01-11)

Bug fixes


	(HPMC) Implicit depletants with spheres and faceted spheres now
produces correct ensembles


	(HPMC) Implicit depletants with ntrial > 0 now produces correct
ensembles


	(HPMC) NPT ensemble in HPMC (hpmc.update.boxmc) now produces
correct ensembles


	Fix a bug where multiple nvt/npt integrators caused warnings from
analyze.log.


	update.balance() is properly ignored when only one rank is available


	Add missing headers to plugin install build


	Fix a bug where charge.pppm calculated an incorrect pressure


	Other changes *


	Drop support for compute 2.0 GPU devices


	Support cusolver with CUDA 8.0






v2.1.1 (2016-10-23)

Bug fixes


	Fix force.active memory allocation bug


	Quiet Python.h warnigns when building (python 2.7)


	Allow multi-character particle types in HPMC (python 2.7)


	Enable dump.getar.writeJSON in MPI


	Allow the flow to change directions in
md.update.mueller_plathe_flow


	Fix critical bug in MPI communication when using HPMC integrators






v2.1.0 (2016-10-04)

New features


	enable/disable overlap checks between pairs of constituent particles
for hpmc.integrate.sphere_union()


	Support for non-additive mixtures in HPMC, overlap checks can now be
enabled/disabled per type-pair


	Add md.constrain.oned to constrain particles to move in one
dimension


	hpmc.integrate.sphere_union() now takes max_members as an
optional argument, allowing to use GPU memory more efficiently


	Add md.special_pair.lj() to support scaled 1-4 (or other)
exclusions in all-atom force fields


	md.update.mueller_plathe_flow(): Method to create shear flows in
MD simulations


	use_charge option for md.pair.reaction_field


	md.charge.pppm() takes a Debye screening length as an optional
parameter


	md.charge.pppm() now computes the rigid body correction to the
PPPM energy




Deprecated


	HPMC: the ignore_overlaps flag is replaced by
hpmc.integrate.interaction_matrix




Other changes


	Optimized MPI simulations of mixed systems with rigid and non-rigid
bodies


	Removed dependency on all boost libraries. Boost is no longer needed
to build hoomd


	Intel compiler builds are no longer supported due to c++11 bugs


	Shorter compile time for HPMC GPU kernels


	Include symlinked external components in the build process


	Add template for external components


	Optimized dense depletant simulations with HPMC on CPU




Bug fixes


	fix invalid mesh energy in non-neutral systems with
md.charge.pppm()


	Fix invalid forces in simulations with many bond types (on GPU)


	fix rare cases where analyze.log() would report a wrong pressure


	fix possible illegal memory access when using
md.constrain.rigid() in GPU MPI simulations


	fix a bug where the potential energy is misreported on the first step
with md.constrain.rigid()


	Fix a bug where the potential energy is misreported in MPI
simulations with md.constrain.rigid()


	Fix a bug where the potential energy is misreported on the first step
with md.constrain.rigid()


	md.charge.pppm() computed invalid forces


	Fix a bug where PPPM interactions on CPU where not computed correctly


	Match logged quantitites between MPI and non-MPI runs on first time
step


	Fix md.pair.dpd and md.pair.dpdlj set_params


	Fix diameter handling in DEM shifted WCA potential


	Correctly handle particle type names in lattice.unitcell


	Validate md.group.tag_list is consistent across MPI ranks






v2.0.3 (2016-08-30)


	hpmc.util.tune now works with particle types as documented


	Fix pressure computation with pair.dpd() on the GPU


	Fix a bug where dump.dcd corrupted files on job restart


	Fix a bug where HPMC walls did not work correctly with MPI


	Fix a bug where stdout/stderr did not appear in MPI execution


	HOOMD will now report an human readable error when users forget
context.initialize()


	Fix syntax errors in frenkel ladd field






v2.0.2 (2016-08-09)


	Support CUDA Toolkit 8.0


	group.rigid()/nonrigid() did not work in MPI simulations


	Fix builds with ENABLE_DOXYGEN=on


	Always add -std=c++11 to the compiler command line arguments


	Fix rare infinite loops when using hpmc.integrate.faceted_sphere


	Fix hpmc.util.tune to work with more than one tunable


	Fix a bug where dump.gsd() would write invalid data in simulations
with changing number of particles


	replicate() sometimes did not work when restarting a simulation






v2.0.1 (2016-07-15)

Bug fixes


	Fix acceptance criterion in mu-V-T simulations with implicit
depletants (HPMC).


	References to disabled analyzers, computes, updaters, etc. are
properly freed from the simulation context.


	Fix a bug where init.read_gsd ignored the restart argument.


	Report an error when HPMC kernels run out of memory.


	Fix ghost layer when using rigid constraints in MPI runs.


	Clarify definition of the dihedral angle.






v2.0.0 (2016-06-22)

HOOMD-blue v2.0 is released under a clean BSD 3-clause license.

New packages


	dem - simulate faceted shapes with dynamics


	hpmc - hard particle Monte Carlo of a variety of shape classes.




Bug fixes


	Angles, dihedrals, and impropers no longer initialize with one
default type.


	Fixed a bug where integrate.brownian gave the same x,y, and z
velocity components.


	Data proxies verify input types and vector lengths.


	dump.dcd no longer generates excessive metadata traffic on lustre
file systems




New features


	Distance constraints constrain.distance - constrain pairs of
particles to a fixed separation distance


	Rigid body constraints constrain.rigid - rigid bodies now have
central particles, and support MPI and replication


	Multi-GPU electrostatics charge.pppm - the long range
electrostatic forces are now supported in MPI runs


	context.initialize() can now be called multiple times - useful in
jupyter notebooks


	Manage multiple simulations in a single job script with
SimulationContext as a python context manager.


	util.quiet_status() / util.unquiet_status() allow users to
control if line status messages are output.


	Support executing hoomd in Jupyter (ipython) notebooks. Notice,
warning, and error messages now show up in the notebook output
blocks.


	analyze.log can now register python callback functions as sources
for logged quantities.


	The GSD file format (http://gsd.readthedocs.io) is fully implemented
in hoomd


	dump.gsd writes GSD trajectories and restart files (use
truncate=true for restarts).


	init.read_gsd reads GSD file and initializes the system, and
can start the simulation from any frame in the GSD file.


	data.gsd_snapshot reads a GSD file into a snapshot which can
be modified before system initialization with
init.read_snapshot.


	The GSD file format is capable of storing all particle and
topology data fields in hoomd, either static at frame 0, or
varying over the course of the trajectory. The number of
particles, types, bonds, etc. can also vary over the trajectory.






	force.active applies an active force (optionally with rotational
diffusion) to a group of particles


	update.constrain_ellipsoid constrains particles to an ellipsoid


	integrate.langevin and integrate.brownian now apply
rotational noise and damping to anisotropic particles


	Support dynamically updating groups. group.force_update() forces
the group to rebuild according to the original selection criteria.
For example, this can be used to periodically update a cuboid group
to include particles only in the specified region.


	pair.reaction_field implements a pair force for a screened
electrostatic interaction of a charge pair in a dielectric medium.


	force.get_energy allows querying the potential energy of a
particle group for a specific force


	init.create_lattice initializes particles on a lattice.


	lattice.unitcell provides a generic unit cell definition for
create_lattice


	Convenience functions for common lattices: sq, hex, sc, bcc, fcc.






	Dump and initialize commands for the GTAR file format
(http://libgetar.readthedocs.io).


	GTAR can store trajectory data in zip, tar, sqlite, or bare
directories


	The current version stores system properties, later versions will
be able to capture log, metadata, and other output to reduce the
number of files that a job script produces.






	integrate.npt can now apply a constant stress tensor to the
simulation box.


	Faceted shapes can now be simulated through the dem component.




Changes that require job script modifications


	context.initialize() is now required before any other hoomd
script command.


	init.reset() no longer exists. Use context.initialize() or
activate a SimulationContext.


	Any scripts that relied on undocumented members of the globals
module will fail. These variables have been moved to the context
module and members of the currently active SimulationContext.


	bonds, angles, dihedrals, and impropers no longer use the
set_coeff syntax. Use bond_coeff.set, angle_coeff.set,
dihedral_coeff.set, and improper_coeff.set instead.


	hoomd_script no longer exists, python commands are now spread
across hoomd, hoomd.md, and other sub packages.


	integrate.\*_rigid() no longer exists. Use a standard integrator
on group.rigid_center(), and define rigid bodies using
constrain.rigid()


	All neighbor lists must be explicitly created using nlist.\*, and
each pair potential must be attached explicitly to a neighbor list. A
default global neighbor list is no longer created.


	Moved cgcmm into its own package.


	Moved eam into the metal package.


	Integrators now take kT arguments for temperature instead of
T to avoid confusion on the units of temperature.


	phase defaults to 0 for updaters and analyzers so that restartable
jobs are more easily enabled by default.


	dump.xml (deprecated) requires a particle group, and can dump
subsets of particles.




Other changes


	CMake minimum version is now 2.8


	Convert particle type names to str to allow unicode type name
input


	__version__ is now available in the top level package


	boost::iostreams is no longer a build dependency


	boost::filesystem is no longer a build dependency


	New concepts page explaining the different styles of neighbor lists


	Default neighbor list buffer radius is more clearly shown to be
r_buff = 0.4


	Memory usage of nlist.stencil is significantly reduced


	A C++11 compliant compiler is now required to build HOOMD-blue




Removed


	Removed integrate.bdnvt: use integrate.langevin


	Removed mtk=False option from integrate.nvt - The MTK NVT
integrator is now the only implementation.


	Removed integrate.\*_rigid(): rigid body functionality is now
contained in the standard integration methods


	Removed the global neighbor list, and thin wrappers to the neighbor
list in nlist.


	Removed PDB and MOL2 dump writers.


	Removed init.create_empty




Deprecated


	Deprecated analyze.msd.


	Deprecated dump.xml.


	Deprecated dump.pos.


	Deprecated init.read_xml.


	Deprecated init.create_random.


	Deprecated init.create_random_polymers.







v1.x


v1.3.3 (2016-03-06)

Bug fixes


	Fix problem incluing hoomd.h in plugins


	Fix random memory errors when using walls






v1.3.2 (2016-02-08)

Bug fixes


	Fix wrong access to system.box


	Fix kinetic energy logging in MPI


	Fix particle out of box error if particles are initialized on the
boundary in MPI


	Add integrate.brownian to the documentation index


	Fix misc doc typos


	Fix runtime errors with boost 1.60.0


	Fix corrupt metadata dumps in MPI runs






v1.3.1 (2016-1-14)

Bug fixes


	Fix invalid MPI communicator error with Intel MPI


	Fix python 3.5.1 seg fault






v1.3.0 (2015-12-8)

New features


	Automatically load balanced domain decomposition simulations.


	Anisotropic particle integrators.


	Gay-Berne pair potential.


	Dipole pair potential.


	Brownian dynamics integrate.brownian


	Langevin dynamics integrate.langevin (formerly bdnvt)


	nlist.stencil to compute neighbor lists using stencilled cell
lists.


	Add single value scale, min_image, and make_fraction to
data.boxdim


	analyze.log can optionally not write a file and now supports
querying current quantity values.


	Rewritten wall potentials.


	Walls are now sums of planar, cylindrical, and spherical
half-spaces.


	Walls are defined and can be modified in job scripts.


	Walls execute on the GPU.


	Walls support per type interaction parameters.


	Implemented for: lj, gauss, slj, yukawa, morse, force_shifted_lj,
and mie potentials.






	External electric field potential: external.e_field




Bug fixes


	Fixed a bug where NVT integration hung when there were 0 particles in
some domains.


	Check SLURM environment variables for local MPI rank identification


	Fixed a typo in the box math documentation


	Fixed a bug where exceptions weren’t properly passed up to the user
script


	Fixed a bug in the velocity initialization example


	Fixed an openmpi fork() warning on some systems


	Fixed segfaults in PPPM


	Fixed a bug where compute.thermo failed after reinitializing a system


	Support list and dict-like objects in init.create_random_polymers.


	Fall back to global rank to assign GPUs if local rank is not
available




Deprecated commands


	integrate.bdnvt is deprecated. Use integrate.langevin
instead.


	dump.bin and init.bin are now removed. Use XML files for
restartable jobs.




Changes that may break existing scripts


	boxdim.wrap now returns the position and image in a tuple, where
it used to return just the position.


	wall.lj has a new API


	dump.bin and init.bin have been removed.






v1.2.1 (2015-10-22)

Bug fixes


	Fix a crash when adding or removing particles and reinitializing


	Fix a bug where simulations hung on sm 5.x GPUs with CUDA 7.5


	Fix compile error with long tests enabled


	Issue a warning instead of an error for memory allocations greater
than 4 GiB.


	Fix invalid RPATH when building inside zsh.


	Fix incorrect simulations with integrate.npt_rigid


	Label mie potential correctly in user documentation






v1.2.0 (2015-09-30)

New features


	Performance improvements for systems with large particle size
disparity


	Bounding volume hierarchy (tree) neighbor list computation


	Neighbor lists have separate r_cut values for each pair of types


	addInfo callback for dump.pos allows user specified information in
pos files




Bug fixes


	Fix test_pair_set_energy unit test, which failed on numpy < 1.9.0


	Analyze.log now accepts unicode strings.


	Fixed a bug where calling restore_snapshot() during a run zeroed
potential parameters.


	Fix segfault on exit with python 3.4


	Add cite.save() to documentation


	Fix a problem were bond forces are computed incorrectly in some MPI
configurations


	Fix bug in pair.zbl


	Add pair.zbl to the documentation


	Use HOOMD_PYTHON_LIBRARY to avoid problems with modified CMake
builds that preset PYTHON_LIBRARY






v1.1.1 (2015-07-21)

Bug fixes


	dump.xml(restart=True) now works with MPI execution


	Added missing documentation for meta.dump_metadata


	Build all unit tests by default


	Run all script unit tests through mpirun -n 1






v1.1.0 (2015-07-14)

New features


	Allow builds with ninja.


	Allow K=0 FENE bonds.


	Allow number of particles types to change after initialization.

system.particles.types.add('newtype')







	Allow number of particles to change after initialization.

system.particles.add(‘A’)
del system.particles[0]







	OPLS dihedral


	Add phase keyword to analyzers and dumps to make restartable jobs easier.


	HOOMD_WALLTIME_STOP environment variable to stop simulation runs before they hit a wall clock limit.


	init.read_xml() Now accepts an initialization and restart file.


	dump.xml() can now write restart files.


	Added documentation concepts page on writing restartable jobs.


	New citation management infrastructure. cite.save() writes .bib files with a list of references to
features actively used in the current job script.


	Snapshots expose data as numpy arrays for high performance access to particle properties.


	data.make_snapshot() makes a new empty snapshot.


	analyze.callback() allows multiple python callbacks to operate at different periods.


	comm.barrier()``and comm.barrier_all()``allow users to insert barriers into their scripts.


	Mie pair potential.


	meta.dump_metadata() writes job metadata information out to a json file.


	context.initialize() initializes the execution context.


	Restart option for dump.xml()




Bug fixes


	Fix slow performance when initializing pair.slj()in MPI runs.


	Properly update particle image when setting position from python.


	PYTHON_SITEDIR hoomd shell launcher now calls the python interpreter
used at build time.


	Fix compile error on older gcc versions.


	Fix a bug where rigid bodies had 0 velocity when restarting jobs.


	Enable -march=native builds in OS X clang builds.


	Fix group.rigid() and group.nonrigid().


	Fix image access from the python data access proxies.


	Gracefully exit when launching MPI jobs with mixed execution
configurations.




Changes that may require updated job scripts


	context.initialize() must be called before any comm
method that queries the MPI rank. Call it as early as possible in
your job script (right after importing hoomd_script) to avoid
problems.




Deprecated


	init.create_empty() is deprecated and will be removed in a future
version. Use data.make_snapshot() and init.read_snapshot()
instead.


	Job scripts that do not call context.initialize() will result in
a warning message. A future version of HOOMD will require that you
call context.initialize().




Removed


	Several option commands for controlling the execution
configuration. Replaced with context.initialize.






v1.0.5 (2015-05-19)

Bug fixes


	Fix segfault when changing integrators


	Fix system.box to indicate the correct number of dimensions


	Fix syntax error in comm.get_rank with –nrank


	Enable CUDA enabled builds with the intel compiler


	Use CMake builtin FindCUDA on recent versions of CMake


	GCC_ARCH env var sets the -march command line option to gcc at
configure time


	Auto-assign GPU-ids on non-compute exclusive systems even with
–mode=gpu


	Support python 3.5 alpha


	Fix a bug where particle types were doubled with boost 1.58.0


	Fix a bug where angle_z=true dcd output was inaccurate near 0 angles


	Properly handle lj.wall potentials with epsilon=0.0 and particles on
top of the walls






v1.0.4 (2015-04-07)

Bug fixes


	Fix invalid virials computed in rigid body simulations when
multi-particle bodies crossed box boundaries


	Fix invalid forces/torques for rigid body simulations caused by race
conditions


	Fix compile errors on Mac OS X 10.10


	Fix invalid pair force computations caused by race conditions


	Fix invalid neighbour list computations caused by race conditions on
Fermi generation GPUs




Other


	Extremely long running unit tests are now off by default. Enable with
-DHOOMD_SKIP_LONG_TESTS=OFF


	Add additional tests to detect race conditions and memory errors in
kernels






v1.0.3 (2015-03-18)

Bug fixes


	Enable builds with intel MPI


	Silence warnings coming from boost and python headers






v1.0.2 (2015-01-21)

Bug fixes


	Fixed a bug where linear_interp would not take a floating point
value for zero


	Provide more useful error messages when cuda drivers are not present


	Assume device count is 0 when cudaGetDeviceCount() returns an
error


	Link to python statically when ENABLE_STATIC=on


	Misc documentation updates






v1.0.1 (2014-09-09)

Bug fixes


	Fixed bug where error messages were truncated and HOOMD exited with
a segmentation fault instead (e.g. on Blue Waters)


	Fixed bug where plug-ins did not load on Blue Waters


	Fixed compile error with gcc4.4 and cuda5.0


	Fixed syntax error in read_snapshot()


	Fixed a bug where init.read_xml throwing an error (or any other
command outside of run()) would hang in MPI runs


	Search the install path for hoomd_script - enable the hoomd
executable to be outside of the install tree (useful with cray
aprun)


	Fixed CMake 3.0 warnings


	Removed dependancy on tr1/random


	Fixed a bug where analyze.msd ignored images in the r0_file


	Fixed typos in pair.gauss documentation


	Fixed compile errors on Ubuntu 12.10


	Fix failure of integrate.nvt to reach target temperature in
analyze.log. The fix is a new symplectic MTK integrate.nvt
integrator. Simulation results in hoomd v1.0.0 are correct, just the
temperature and velocity outputs are off slightly.


	Remove MPI from Mac OS X dmg build.


	Enable import hoomd_script as ...




Other changes


	Added default compile flag -march=native


	Support CUDA 6.5


	Binary builds for CentOS/RHEL 6, Fedora 20, Ubuntu 14.04 LTS, and
Ubuntu 12.04 LTS.






Version 1.0.0 (2014-05-25)

New features


	Support for python 3


	New NPT integrator capable of flexible coupling schemes


	Triclinic unit cell support


	MPI domain decomposition


	Snapshot save/restore


	Autotune block sizes at run time


	Improve performance in small simulation boxes


	Improve performance with smaller numbers of particles per GPU


	Full double precision computations on the GPU (compile time option
must be enabled, binary builds provided on the download page are
single precision)


	Tabulated bond potential bond.table


	Tabulated angle potential angle.table


	Tabulated dihedral potental dihedral.table


	update.box_resize now accepts period=None to trigger an
immediate update of the box without creating a periodic updater


	update.box_resize now replaces None arguments with the current
box parameters


	init.create_random and init.create_random_polymers can now
create random configurations in triclinc and 2D boxes


	init.create_empty can now create triclinic boxes


	particle, bond, angle, dihedral, and impropers types can now be named
in init.create_empty


	system.replicate command replicates the simulation box




Bug fixes


	Fixed a bug where init.create_random_polymers failed when lx,ly,lz
were not equal.


	Fixed a bug in init.create_random_polymers and init.create_random
where the separation radius was not accounted for correctly


	Fixed a bug in bond.* where random crashes would occur when more
than one bond type was defined


	Fixed a bug where dump.dcd did not write the period to the file




Changes that may require updated job scripts


	integrate.nph: A time scale tau_p for the relaxation of the
barostat is now required instead of the barostat mass W of the
previous release. The time scale is the relaxation time the barostat
would have at an average temperature T_0 = 1, and it is related
to the internally used (Andersen) Barostat mass W via
W = d N T_0 tau_p^2, where d is the dimensionsality and N the
number of particles.


	sorter and nlist are now modules, not variables in the
__main__ namespace.


	Data proxies function correctly in MPI simulations, but are extremely
slow. If you use init.create_empty, consider separating the
generation step out to a single rank short execution that writes an
XML file for the main run.


	update.box_resize(Lx=...) no longer makes cubic box updates,
instead it will keep the current Ly and Lz. Use the L=...
shorthand for cubic box updates.


	All init.* commands now take data.boxdim objects, instead of
hoomd.boxdim (or 3-tuples). We strongly encourage the use of
explicit argument names for data.boxdim(). In particular, if
hoomd.boxdim(123) was previously used to create a cubic box, it
is now required to use data.boxdim(L=123) (CORRECT) instead of
data.boxdim(123) (INCORRECT), otherwise a box with unit
dimensions along the y and z axes will be created.


	system.dimensions can no longer be set after initialization.
System dimensions are now set during initialization via the
data.boxdim interface. The dimensionality of the system can now
be queried through system.box.


	system.box no longer accepts 3-tuples. It takes data.boxdim
objects.


	system.dimensions no longer exists. Query the dimensionality of
the system from system.box. Set the dimensionality of the system
by passing an appropriate data.boxdim to an init method.


	init.create_empty no longer accepts n_*_types. Instead, it
now takes a list of strings to name the types.




Deprecated


	Support for G80, G200 GPUs.


	dump.bin and read.bin. These will be removed in v1.1 and
replaced with a new binary format.




Removed


	OpenMP mult-core execution (replaced with MPI domain decomposition)


	tune.find_optimal_block_size (replaced by Autotuner)







v0.x


Version 0.11.3 (2013-05-10)

Bug fixes


	Fixed a bug where charge.pppm could not be used after init.reset()


	Data proxies can now set body angular momentum before the first run()


	Fixed a bug where PPPM forces were incorrect on the GPU






Version 0.11.2 (2012-12-19)

New features


	Block sizes tuned for K20




Bug fixes


	Warn user that PPPM ignores rigid body exclusions


	Document that proxy iterators need to be deleted before init.reset()


	Fixed a bug where body angular momentum could not be set


	Fixed a bug where analyze.log would report nan for the pressure
tensor in nve and nvt simulations






Version 0.11.1 (2012-11-2)

New features


	Support for CUDA 5.0


	Binary builds for Fedora 16 and OpenSUSE 12.1


	Automatically specify /usr/bin/gcc to nvcc when the configured gcc is
not supported




Bug fixes


	Fixed a compile error with gcc 4.7


	Fixed a bug where PPPM forces were incorrect with neighborlist
exclusions


	Fixed an issue where boost 1.50 and newer were not detected properly
when BOOST_ROOT is set


	Fixed a bug where accessing force data in python prevented
init.reset() from working


	Fixed a bug that prevented pair.external from logging energy


	Fixed a unit test that failed randomly






Version 0.11.0 (2012-07-27)

New features


	Support for Kepler GPUs (GTX 680)


	NPH integration (integrate.nph)


	Compute full pressure tensor


	Example plugin for new bond potentials


	New syntax for bond coefficients: bond.bond_coeff.set(‘type’,
params)


	New external potential: external.periodic applies a periodic
potential along one direction (uses include inducing lamellar phases
in copolymer systems)


	Significant performance increases when running analyze.log,
analyze.msd, update.box_resize, update.rescale_temp, or
update.zero_momentum with a small period


	Command line options may now be overwritten by scripts, ex:
options.set_gpu(2)


	Added –user command line option to allow user defined options to
be passed into job scripts, ex: –user=“-N=5 -phi=0.56”


	Added table.set_from_file method to enable reading table based
pair potentials from a file


	Added –notice-level command line option to control how much extra
information is printed during a run. Set to 0 to disable, or any
value up to 10. At 10, verbose debugging information is printed.


	Added –msg-file command line option which redirects the message
output to a file


	New pair potential pair.force_shifted_lj : Implements
http://dx.doi.org/10.1063/1.3558787




Bug fixes


	Fixed a bug where FENE bonds were sometimes computed incorrectly


	Fixed a bug where pressure was computed incorrectly when using
pair.dpd or pair.dpdlj


	Fixed a bug where using OpenMP and CUDA at the same time caused
invalid memory accesses


	Fixed a bug where RPM packages did not work on systems where the CUDA
toolkit was not installed


	Fixed a bug where rigid body velocities were not set from python


	Disabled OpenMP builds on Mac OS X. HOOMD-blue w/ openmp enabled
crashes due to bugs in Apple’s OpenMP implementation.


	Fixed a bug that allowed users to provide invalid rigid body data and
cause a seg fault.


	Fixed a bug where using PPPM resulted in error messages on program
exit.




API changes


	Bond potentials rewritten with template evaluators


	External potentials use template evaluators


	Complete rewrite of ParticleData - may break existing plugins


	Bond/Angle/Dihedral data structures rewritten


	The GPU specific data structures are now generated on the GPU






	DPDThermo and DPDLJThermo are now processed by the same template
class


	Headers that cannot be included by nvcc now throw an error when they
are


	CUDA 4.0 is the new minimum requirement


	Rewrote BoxDim to internally handle minimum image conventions


	HOOMD now only compiles ptx code for the newest architecture, this
halves the executable file size


	New Messenger class for global control of messages printed to the
screen / directed to a file.




Testing changes


	Automated test suite now performs tests on OpenMPI + CUDA builds


	Valgrind tests added back into automated test suite


	Added CPU test in bd_ridid_updater_tests


	ctest -S scripts can now set parallel makes (with cmake > 2.8.2)






Version 0.10.1 (2012-02-10)


	Add missing entries to credits page


	Add dist_check option to neighbor list. Can be used to force
neighbor list builds at a specified frequency (useful in profiling
runs with nvvp).


	Fix typos in ubuntu compile documentation


	Add missing header files to hoomd.h


	Add torque to the python particle data access API


	Support boost::filesystem API v3


	Expose name of executing gpu, n_cpu, hoomd version, git sha1, cuda
version, and compiler version to python


	Fix a bug where multiple nvt_rigid or npt_rigid integrators
didn’t work correctly


	Fix missing pages in developer documentation






Version 0.10.0 (2011-12-14)

New features


	Added pair.dpdlj which uses the DPD thermostat and the
Lennard-Jones potential. In previous versions, this could be
accomplished by using two pair commands but at the cost of reduced
performance.


	Additional example scripts are now present in the documentation. The
example scripts are cross-linked to the commands that are used in
them.


	Most dump commands now accept the form:
dump.ext(filename=“filename.ext”) which immediately writes out
filename.ext.


	Added vis parameter to dump.xml which enables output options
commonly used in files written for the purposes of visulization.
dump.xml also now accepts parameters on the instantiation line.
Combined with the previous feature, dump.xml(filename=“file.xml”,
vis=True) is now a convenient short hand for what was previously

xml = dump.xml()
xml.set_params(position = True, mass = True, diameter = True,
                      type = True, bond = True, angle = True,
                      dihedral = True, improper = True, charge = True)
xml.write(filename="file.xml")







	Specify rigid bodies in XML input files


	Simulations that contain rigid body constraints applied to groups of
particles in BDNVT, NVE, NVT, and NPT ensembles.


	integrate.bdnvt_rigid


	integrate.nve_rigid


	integrate.nvt_rigid


	integrate.npt_rigid






	Energy minimization of rigid bodies
(integrate.mode_minimize_rigid_fire)


	Existing commands are now rigid-body aware


	update.rescale_temp


	update.box_resize


	update.enforce2d


	update.zero_momentum






	NVT integration using the Berendsen thermostat
(integrate.berendsen)


	Bonds, angles, dihedrals, and impropers can now be created and
deleted with the python data access API.


	Attribution clauses added to the HOOMD-blue license.




Changes that may break existing job scripts


	The wrap option to dump.dcd has been changed to unwrap_full and
its meaning inverted. dump.dcd now offers two options for
unwrapping particles, unwrap_full fully unwraps particles into
their box image and unwrap_rigid unwraps particles in rigid bodies
so that bodies are not broken up across a box boundary.




Bug/fixes small enhancements


	Fixed a bug where launching hoomd on mac os X 10.5 always resulted
in a bus error.


	Fixed a bug where DCD output restricted to a group saved incorrect
data.


	force.constant may now be applied to a group of particles, not just
all particles


	Added C++ plugin example that demonstrates how to add a pair
potential in a plugin


	Fixed a bug where box.resize would always transfer particle data
even in a flat portion of the variant


	OpenMP builds re-enabled on Mac OS X


	Initial state of integrate.nvt and integrate.npt changed to decrease
oscillations at startup.


	Fixed a bug where the polymer generator would fail to initialize
very long polymers


	Fixed a bug where images were passed to python as unsigned ints.


	Fixed a bug where dump.pdb wrote coordinates in the wrong order.


	Fixed a rare problem where a file written by dump.xml would not be
read by init.read_xml due to round-off errors.


	Increased the number of significant digits written out to dump.xml
to make them more useful for ad-hoc restart files.


	Potential energy and pressure computations that slow performance are
now only performed on those steps where the values are actually
needed.


	Fixed a typo in the example C++ plugin


	Mac build instructions updated to work with the latest version of
macports


	Fixed a bug where set_period on any dump was ineffective.


	print_status_line now handles multiple lines


	Fixed a bug where using bdnvt tally with per type gammas resulted in
a race condition.


	Fix an issue where ENABLE_CUDA=off builds gave nonsense errors when
–mode=gpu was requested.


	Fixed a bug where dumpl.xml could produce files that init.xml would
not read


	Fixed a typo in the example plugin


	Fix example that uses hoomd as a library so that it compiles.


	Update maintainer lines


	Added message to nlist exclusions that notifies if diameter or body
exclusions are set.


	HOOMD-blue is now hosted in a git repository


	Added bibtex bibliography to the user documentation


	Converted user documentation examples to use doxygen auto
cross-referencing \example commands


	Fix a bug where particle data is not released in dump.binary


	ENABLE_OPENMP can now be set in the ctest builds


	Tuned block sizes for CUDA 4.0


	Removed unsupported GPUS from CUDA_ARCH_LIST






Version 0.9.2 (2011-04-04)

Note: only major changes are listed here.

New features


	New exclusion option: Particles can now be excluded from the
neighbor list based on diameter consistent with pair.slj.


	New pair coeff syntax: Coefficients for multiple type pairs can be
specified conveniently on a single line.

coeff.set(['A', 'B', 'C', 'D'], ['A', 'B', 'C', 'D'], epsilon=1.0)







	New documentation: HOOMD-blue’s system of units is now fully
documented, and every coefficient in the documentation is labeled
with the appropriate unit.


	Performance improvements: Performance has been significantly
boosted for simulations of medium sized systems (5,000-20,000
particles). Smaller performance boosts were made to larger runs.


	CUDA 3.2 support: HOOMD-blue is now fully tested and performance
tuned for use with CUDA 3.2.


	CUDA 4.0 support: HOOMD-blue compiles with CUDA 4.0 and passes
initial tests.


	New command: tune.r_buff performs detailed auto-tuning of the
r_buff neighborlist parameter.


	New installation method: RPM, DEB, and app bundle packages are now
built for easier installation


	New command: charge.pppm computes the full long range electrostatic
interaction using the PPPM method




Bug/fixes small enhancements


	Fixed a bug where the python library was linked statically.


	Added the PYTHON_SITEDIR setting to allow hoomd builds to install
into the native python site directory.


	FIRE energy minimization convergence criteria changed to require
both energy and force to converge


	Clarified that groups are static in the documentation


	Updated doc comments for compatibility with Doxygen#7.3


	system.particles.types now lists the particle types in the
simulation


	Creating a group of a non-existant type is no longer an error


	Mention XML file format for walls in wall.lj documentation


	Analyzers now profile themselves


	Use \n for newlines in dump.xml - improves
performance when writing many XML files on a NFS file system


	Fixed a bug where the neighbor list build could take an
exceptionally long time (several seconds) to complete the first
build.


	Fixed a bug where certain logged quantities always reported as 0 on
the first step of the simulation.


	system.box can now be used to read and set the simulation box size
from python


	Numerous internal API updates


	Fixed a bug the resulted in incorrect behavior when using
integrate.npt on the GPU.


	Removed hoomd launcher shell script. In non-sitedir installs,
${HOOMD_ROOT}/bin/hoomd is now the executable itself


	Creating unions of groups of non-existent types no longer produces a
seg fault


	hoomd now builds on all cuda architectures. Modify CUDA_ARCH_LIST in
cmake to add or remove architectures from the build


	hoomd now builds with boost#46.0


	Updated hoomd icons to maize/blue color scheme


	hoomd xml file format bumped to#3, adds support for charge.


	FENE and harmonic bonds now handle 0 interaction parameters and 0
length bonds more gracefully


	The packaged plugin template now actually builds and installs into a
recent build of hoomd






Version 0.9.1 (2010-10-08)

Note: only major changes are listed here.

New features


	New constraint: constrain.sphere constrains a group of particles to
the surface of a sphere


	New pair potential/thermostat: pair.dpd implements the standard DPD
conservative, random, and dissipative forces


	New pair potential: pair.dpd_conservative applies just the
conservative DPD potential


	New pair potential: pair.eam implements the Embedded Atom Method
(EAM) and supports both alloy and FS type computations.


	Faster performance: Cell list and neighbor list code has been
rewritten for performance.


	In our benchmarks, performance increases ranged from 10-50%
over HOOMD-blue 0.9.0. Simulations with shorter cutoffs tend to
attain a higher performance boost than those with longer cutoffs.


	We recommended that you re-tune r_buff values for optimal
performance with 0.9.1.


	Due to the nature of the changes, identical runs may produce
different trajectories.






	Removed limitation: The limit on the number of neighbor list
exclusions per particle has been removed. Any number of exclusions
can now be added per particle. Expect reduced performance when adding
excessive numbers of exclusions.




Bug/fixes small enhancements


	Pressure computation is now correct when constraints are applied.


	Removed missing files from hoomd.h


	pair.yukawa is no longer referred to by “gaussian” in the
documentation


	Fermi GPUs are now prioritized over per-Fermi GPUs in systems where
both are present


	HOOMD now compiles against CUDA 3.1


	Momentum conservation significantly improved on compute#x hardware


	hoomd plugins can now be installed into user specified directories


	Setting r_buff=0 no longer triggers exclusion list updates on every
step


	CUDA 2.2 and older are no longer supported


	Workaround for compiler bug in 3.1 that produces extremely high
register usage


	Disabled OpenMP compile checks on Mac OS X


	Support for compute 2.1 devices (such as the GTX 460)






Version 0.9.0 (2010-05-18)

Note: only major changes are listed here.

New features


	New pair potential: Shifted LJ potential for particles of varying
diameters (pair.slj)


	New pair potential: Tabulated pair potential (pair.table)


	New pair potential: Yukawa potential (pair.yukawa)


	Update to pair potentials: Most pair potentials can now accept
different values of r_cut for different type pairs. The r_cut
specified in the initial pair.*** command is now treated as the
default r_cut, so no changes to scripts are necessary.


	Update to pair potentials: Default pair coeff values are now
supported. The parameter alpha for lj now defaults to#0, so there is
no longer a need to specify it for a majority of simulations.


	Update to pair potentials: The maximum r_cut needed for the
neighbor list is now determined at the start of each run(). In
simulations where r_cut may decrease over time, increased
performance will result.


	Update to pair potentials: Pair potentials are now specified via
template evaluator classes. Adding a new pair potential to hoomd now
only requires a small amount of additional code.


	Plugin API : Advanced users/developers can now write, install, and
use plugins for hoomd without needing to modify core hoomd source
code


	Particle data access: User-level hoomd scripts can now directly
access the particle data. For example, one can change all particles
in the top half of the box to be type B:

top = group.cuboid(name="top", zmin=0)
for p in top:
    p.type = 'B'





. All particle data including position, velocity, type, ‘’et
cetera’’, can be read and written in this manner. Computed forces
and energies can also be accessed in a similar way.



	New script command: init.create_empty() can be used in conjunction
with the particle data access above to completely initialize a
system within the hoomd script.


	New script command: dump.bin() writes full binary restart files
with the entire system state, including the internal state of
integrators.


	File output can be gzip compressed (if zlib is available) to save
space


	Output can alternate between two different output files for safe
crash recovery






	New script command: init.read_bin() reads restart files written by
dump.bin()


	New option: run() now accepts a quiet option. When True, it
eliminates the status information printouts that go to stdout.


	New example script: Example 6 demonstrates the use of the particle
data access routines to initialize a system. It also demonstrates
how to initialize velocities from a gaussian distribution


	New example script: Example 7 plots the pair.lj potential energy
and force as evaluated by hoomd. It can trivially be modified to
plot any potential in hoomd.


	New feature: Two dimensional simulations can now be run in hoomd:
#259


	New pair potential: Morse potential for particles of varying
diameters (pair.morse)


	New command: run_upto will run a simulation up to a given time
step number (handy for breaking long simulations up into many
independent jobs)


	New feature: HOOMD on the CPU is now accelerated with OpenMP.


	New feature: integrate.mode_minimize_fire performs energy
minimization using the FIRE algorithm


	New feature: analyze.msd can now accept an xml file specifying the
initial particle positions (for restarting jobs)


	Improved feature: analyze.imd now supports all IMD commands that
VMD sends (pause, kill, change trate, etc.)


	New feature: Pair potentials can now be given names, allowing
multiple potentials of the same type to be logged separately.
Additionally, potentials that are disabled and not applied to the
system dynamics can be optionally logged.


	Performance improvements: Simulation performance has been
increased across the board, but especially when running systems with
very low particle number densities.


	New hardware support: 0.9.0 and newer support Fermi GPUs


	Deprecated hardware support: 0.9.x might continue run on compute#1
GPUs but that hardware is no longer officially supported


	New script command: group.tag_list() takes a python list of
particle tags and creates a group


	New script command: compute.thermo() computes thermodynamic
properties of a group of particles for logging


	New feature: dump.dcd can now optionally write out only those
particles that belong to a specified group




Changes that will break jobs scripts written for 0.8.x


	Integration routines have changed significantly to enable new use
cases. Where scripts previously had commands like:

integrate.nve(dt=0.005)





they now need

all = group.all()
integrate.mode_standard(dt=0.005)
integrate.nve(group=all)





. Integrating only specific groups of particles enables simulations
to fix certain particles in place or integrate different parts of the
system at different temperatures, among many other possibilities.



	sorter.set_params no longer takes the ‘’bin_width’’ argument. It is
replaced by a new ‘’grid’’ argument, see the documentation for
details.


	conserved_quantity is no longer a quantity available for logging.
Instead log the nvt reservoir energy and compute the total conserved
quantity in post processing.




Bug/fixes small enhancements


	Fixed a bug where boost#38 is not found on some machines


	dump.xml now has an option to write particle accelerations


	Fixed a bug where periods like 1e6 were not accepted by updaters


	Fixed a bug where bond.fene forces were calculated incorrectly
between particles of differing diameters


	Fixed a bug where bond.fene energies were computed incorrectly when
running on the GPU


	Fixed a bug where comments in hoomd xml files were not ignored as
they aught to be: #331


	It is now possible to prevent bond exclusions from ever being added
to the neighbor list: #338


	init.create_random_polymers can now generate extremely dense systems
and will warn the user about large memory usage


	variant.linear_interp now accepts a user-defined zero (handy for
breaking long simulations up into many independent jobs)


	Improved installation and compilation documentation


	Integration methods now silently ignore when they are given an empty
group


	Fixed a bug where disabling all forces resulted in some forces still
being applied


	Integrators now behave in a reasonable way when given empty groups


	Analyzers now accept a floating point period


	run() now aborts immediately if limit_hours=0 is specified.


	Pair potentials that diverge at r=0 will no longer result in invalid
simulations when the leading coefficients are set to zero.


	integrate.bdnvt can now tally the energy transferred into/out of the
“reservoir”, allowing energy conservation to be monitored during bd
simulation runs.


	Most potentials now prevent NaN results when computed for
overlapping particles


	Stopping a simulation from a callback or time limit no longer
produces invalid simulations when continued


	run() commands limited with limit_hours can now be set to only stop
on given timestep multiples


	Worked around a compiler bug where pair.morse would crash on Fermi
GPUs


	ULF stability improvements for G200 GPUs.






Version 0.8.2 (2009-09-10)

Note: only major changes are listed here.

New features


	Quantities that vary over time can now be specified easily in
scripts with the variant.linear_interp command.


	Box resizing updater (update.box_resize) command that uses the time
varying quantity command to grow or shrink the simulation box.


	Individual run() commands can be limited by wall-clock time


	Angle forces can now be specified


	Dihedral forces can now be specified


	Improper forces can now be specified


	1-3 and 1-4 exclusions from the cutoff pair force can now be chosen


	New command line option: –minimize-cpu-usage cuts the CPU usage of
HOOMD down to 10% of one CPU core while only decreasing overall
performance by 10%


	Major changes have been made in the way HOOMD chooses the device on
which to run (all require CUDA 2.2 or newer)


	there are now checks that an appropriate NVIDIA drivers is
installed


	running without any command line options will now correctly
revert to running on the CPU if no capable GPUs are installed


	when no gpu is explicitly specified, the default choice is now
prioritized to choose the fastest GPU and one that is not
attached to a display first


	new command line option: –ignore-display-gpu will prevent HOOMD
from executing on any GPU attached to a display


	HOOMD now prints out a short description of the GPU(s) it is
running on


	on linux, devices can be set to compute-exclusive mode and HOOMD
will then automatically choose the first free GPU (see the
documentation for details)






	nlist.reset_exclusions command to control the particles that are
excluded from the neighbor list




Bug/fixes small enhancements


	Default block size change to improve stability on compute#3 devices


	ULF workaround on GTX 280 now works with CUDA 2.2


	Standalone benchmark executables have been removed and replaced by
in script benchmarking commands


	Block size tuning runs can now be performed automatically using the
python API and results can be saved on the local machine


	Fixed a bug where GTX 280 bug workarounds were not properly applied
in CUDA 2.2


	The time step read in from the XML file can now be optionally
overwritten with a user-chosen one


	Added support for CUDA 2.2


	Fixed a bug where the WCA forces included in bond.fene had an
improper cutoff


	Added support for a python callback to be executed periodically
during a run()


	Removed demos from the hoomd downloads. These will be offered
separately on the webpage now to keep the required download size
small.


	documentation improvements


	Significantly increased performance of dual-GPU runs when build with
CUDA 2.2 or newer


	Numerous stability and performance improvements


	Temperatures are now calculated based on 3N-3 degrees of freedom.
See #283 for a more flexible system that is coming in the future.


	Emulation mode builds now work on systems without an NVIDIA card
(CUDA 2.2 or newer)


	HOOMD now compiles with CUDA 2.3


	Fixed a bug where uninitialized memory was written to dcd files


	Fixed a bug that prevented the neighbor list on the CPU from working
properly with non-cubic boxes


	There is now a compile time hack to allow for more than 4 exclusions
per particle


	Documentation added to aid users in migrating from LAMMPS


	hoomd_script now has an internal version number useful for third
party scripts interfacing with it


	VMD#8.7 is now found by the live demo scripts


	live demos now run in vista 64-bit


	init.create_random_polymers can now create polymers with more than
one type of bond






Version 0.8.1 (2009-03-24)

Note: only major changes are listed here.

New features


	Significant performance enhancements


	New build option for compiling on UMich CAC clusters:
ENABLE_CAC_GPU_ID compiles HOOMD to read in the $CAC_GPU_ID
environment variable and use it to determine which GPUs to execute
on. No –gpu command line required in job scripts any more.


	Particles can now be assigned a non-unit mass


	init.reset() command added to allow for the creation of a looped
series of simulations all in python


	dump.pdb() command for writing PDB files


	pair.lj now comes with an option to shift the potential energy to
0 at the cutoff


	pair.lj now comes with an opiton to smoothly switch both the
potential and force to 0 at the cutoff with the XPLOR smoothing
function


	Gaussian pair potential computation added (pair.gauss)


	update and analyze commands can now be given a function to determine
a non-linear rate to run at


	analyze.log, and dump.dcd can now append to existing files




Changes that will break scripts from 0.8.0


	dump.mol2() has been changed to be more consistent with other dump
commands. In order to get the same result as the previous behavior,
replace

dump.mol2(filename="file.mol2")





with

mol2 = dump.mol2()
mol2.write(filename="file.mol2")







	Grouping commands have been moved to their own package for
organizational purposes. group_all() must now be called as
group.all() and similarly for tags and type.




Bug/fixes small enhancements


	Documentation updates


	DCD file writing no longer crashes HOOMD in windows


	!FindBoost.cmake is patched upstream. Use CMake 2.6.3 if you need
BOOST_ROOT to work correctly


	Validation tests now run with –gpu_error_checking


	ULF bug workarounds are now enabled only on hardware where they are
needed. This boosts performance on C1060 and newer GPUs.


	!FindPythonLibs now always finds the shared python libraries, if
they exist


	“make package” now works fine on mac os x


	Fixed erroneously reported dangerous neighbor list builds when using
–mode=cpu


	Small tweaks to the XML file format.


	Numerous performance enhancements


	Workaround for ULF on compute#1 devices in place


	dump.xml can now be given the option “all=true” to write all fields


	total momentum can now be logged by analyze.log


	HOOMD now compiles with boost#38 (and hopefully future versions)


	Updaters can now be given floating point periods such as 1e5


	Additional warnings are now printed when HOOMD is about to allocate
a large amount of memory due to the specification of an extremely
large box size


	run() now shows up in the documentation index


	Default sorter period is now 100 on CPUs to improve performance on
chips with small caches






Version 0.8.0 (2008-12-22)

Note: only major changes are listed here.

New features


	Addition of FENE bond potential


	Addition of update.zero_momentum command to zero a system’s linear
momentum


	Brownian dynamics integration implemented


	Multi-GPU simulations


	Particle image flags are now tracked. analyze.msd command added to
calculate the mean squared displacement.




Changes that will break scripts from 0.7.x


	analyze.log quantity names have changed




Bug/fixes small enhancements


	Performance of the neighbor list has been increased significantly on
the GPU (overall performance improvements are approximately 10%)


	Profile option added to the run() command


	Warnings are now correctly printed when negative coefficients are
given to bond forces


	Simulations no longer fail on G200 cards


	Mac OS X binaries will be provided for download: new documentation
for installing on Mac OS x has been written


	Two new demos showcasing large systems


	Particles leaving the simulation box due to bad initial conditions
now generate an error


	win64 installers will no longer attempt to install on win32 and
vice-versa


	neighborlist check_period now defaults to 1


	The elapsed time counter in run() now continues counting time over
multiple runs.


	init.create_random_polymers now throws an error if the bond length
is too small given the specified separation radii


	Fixed a bug where a floating point value for the count field in
init.create_random_polymers produced an error


	Additional error checking to test if particles go NaN


	Much improved status line printing for identifying hoomd_script
commands


	Numerous documentation updates


	The VS redistributable package no longer needs to be installed to
run HOOMD on windows (these files are distributed with HOOMD)


	Now using new features in doxygen#5.7 to build pdf user
documentation for download.


	Performance enhancements of the Lennard-Jones pair force
computation, thanks to David Tarjan


	A header prefix can be added to log files to make them more gnuplot
friendly


	Log quantities completely revamped. Common quantities (i.e. kinetic
energy, potential energy can now be logged in any simulation)


	Particle groups can now be created. Currently only analyze.msd makes
use of them.


	The CUDA toolkit no longer needs to be installed to run a packaged
HOOMD binary in windows.


	User documentation can now be downloaded as a pdf.


	Analyzers and updaters now count time 0 as being the time they were
created, instead of time step 0.


	Added job test scripts to aid in validating HOOMD


	HOOMD will now build with default settings on a linux/unix-like OS
where the boost static libraries are not installed, but the dynamic
ones are.






Version 0.7.1 (2008-09-12)


	Fixed bug where extremely large box dimensions resulted in an
argument error - ticket:118


	Fixed bug where simulations ran incorrectly with extremely small box
dimensions - ticket:138






Version 0.7.0 (2008-08-12)

Note: only major changes are listed here.


	Stability and performance improvements.


	Cleaned up the hoomd_xml file format.


	Improved detection of errors in hoomd_xml files significantly.


	Users no longer need to manually specify HOOMD_ROOT, unless their
installation is non-standard


	Particle charge can now be read in from a hoomd_xml file


	Consistency changes in the hoomd_xml file format: HOOMD 0.6.0 XML
files are not compatible. No more compatibility breaking changes are
planned after 0.7.0


	Enabled parallel builds in MSVC for faster compilation times on
multicore systems


	Numerous small bug fixes


	New force compute for implementing walls


	Documentation updates


	Support for CUDA 2.0


	Bug fixed allowing simulations with no integrator


	Support for boost#35.0


	Cleaned up GPU code interface


	NVT integrator now uses tau (period) instead of Q (the mass of the
extra degree of freedom).


	Added option to NVE integration to limit the distance a particle
moves in a single time step


	Added code to dump system snapshots in the DCD file format


	Particle types can be named by strings


	A snapshot of the initial configuration can now be written in the
.mol2 file format


	The default build settings now enable most of the optional features


	Separated the user and developer documentation


	Mixed polymer systems can now be generated inside HOOMD


	Support for CMake 2.6.0


	Wrote the user documentation


	GPU selection from the command line


	Implementation of the job scripting system


	GPU can now handle neighbor lists that overflow


	Energies are now calculated


	Added a logger for logging energies during a simulation run


	Code now actually compiles on Mac OS X


	Benchmark and demo scripts now use the new scripting system


	Consistent error message format that is more visible.


	Multiple types of bonds each with the own coefficients are now
supported


	Added python scripts to convert from HOOMD’s XML file format to
LAMMPS input and dump files


	Fixed a bug where empty xml nodes in input files resulted in an
error message


	Fixed a bug where HOOMD seg faulted when a particle left the
simulation , vis=True)* is now a convenient short hand for what was
previously box now works fine on mac os x


	Fixed erroneously reported dangerous neighbor list builds when using
–mode=cpu


	Small tweaks to the XML file format.


	Numerous performance enhancements


	Workaround for ULF on compute#1 devices in place


	dump.xml can now be given the option









          

      

      

    

  

    
      
          
            
  
Command line options


Overview

Arguments are processed in hoomd.context.initialize(). Call
hoomd.context.initialize() immediately after importing hoomd so that the requested MPI and GPU options can be
initialized as early as possible.

There are two ways to specify arguments.



	On the command line: python script.py [options]:

import hoomd
hoomd.context.initialize()







	Within your script:

import hoomd
hoomd.context.initialize("[options]")












With no arguments, hoomd.context.initialize() will attempt to parse all arguments from the command line, whether
it understands them or not. When you pass a string, it ignores the command line (sys.argv [https://docs.python.org/3/library/sys.html#sys.argv])
and parses the given string as if it were issued on the command line. In jupyter notebooks, use
context.initialize("") to avoid errors from jupyter specific command line arguments.



Options


	no options given


hoomd will automatically detect the fastest GPU and run on it, or fall back on the CPU if no GPU is found.






	-h, --help


print a description of all the command line options






	--mode={cpu | gpu}


force hoomd to run either on the cpu or gpu






	--gpu=#


specify the GPU id or comma-separated list of GPUs (with NVLINK) that hoomd will use. Implies --mode=gpu.






	--ignore-display-gpu


prevent hoomd from using any GPU that is attached to a display






	--minimize-cpu-usage


minimize the CPU usage of hoomd when it runs on a GPU at reduced performance






	--gpu_error_checking


enable error checks after every GPU kernel call






	--notice-level=#


specifies the level of notice messages to print






	--msg-file=filename


specifies a file to write messages (the file is overwritten)






	--single-mpi


allow single-threaded HOOMD builds in MPI jobs






	--user


user options






	
	MPI only options

	
	--nx=#


Number of domains along the x-direction






	--ny=#


Number of domains along the y-direction






	--nz=#


Number of domains along the z-direction






	--linear


Force a slab (1D) decomposition along the z-direction






	--nrank=#


Number of ranks per partition






	--shared-msg-file=prefix


specifies the prefix of files to write per-partition output to (filename: prefix.<partition_id>)














	
	Option available only when compiled with TBB support

	
	--nthreads=#


Number of TBB threads to use, by default use all CPUs in the system


















Detailed description


Control hoomd execution

HOOMD-blue can run on the CPU or the GPU.  To control which,
set the --mode option on the script command line. Valid settings are cpu
and gpu:

python script.py --mode=cpu





When --mode is set to gpu and no other options are specified, hoomd will
choose a GPU automatically. It will prioritize the GPU choice based on speed and
whether it is attached to a display. Unless you take steps to configure your system
(see below), then running a second instance of HOOMD-blue will place it on the same GPU
as the first. HOOMD-blue will run correctly with more than one simulation on a GPU as
long as there is enough memory, but at reduced performance.

You can select the GPU on which to run using the --gpu command line option:

python script.py --gpu=1






Note

--gpu implies --mode=gpu. To find out which id
is assigned to each GPU in your system, download the CUDA SDK for your system
from http://www.nvidia.com/object/cuda_get.html and run the deviceQuery sample.



If you run a script without any options:

python script.py





hoomd first checks if there are any GPUs in the system. If it finds one or more,
it makes the same automatic choice described previously. If none are found, it runs on the CPU.



Multi-GPU (and multi-CPU) execution with MPI

HOOMD-blue uses MPI domain decomposition for parallel execution. Execute python with mpirun, mpiexec, or whatever the
appropriate launcher is on your system. For more information, see MPI domain decomposition:

mpirun -n 8 python script.py





All command line options apply to MPI execution in the same way as single process runs.

When n > 1 and no explicit GPU is specified, HOOMD uses the the local MPI rank to assign GPUs to ranks on each node.
This is the default behavior and works on most cluster schedulers.



Multi-GPU execution with NVLINK

You can run HOOMD on multiple GPUs in the same compute node that are connected with NVLINK. To find out
if your node supports it, run:

nvidia-smi -m topo





If the GPUs are connected by NVLINK, launch HOOMD with:

python script.py --gpu=0,1,2





to execute on GPUs 0,1 and 2. For multi-GPU execution it is required that all GPUs have the same compute
capability >= 6.0.  Not all kernels are currently NVLINK enabled; performance may depend on the subset of
features used.

Multi-GPU execution with NVLINK may be combined with MPI parallel execution (see above). It is especially
beneficial when further decomposition of the domain using MPI is not feasible or slower, but speed-ups are still
possible.



Automatic free GPU selection

You can configure your system for HOOMD-blue to choose free GPUs automatically when each instance is run. To utilize this
capability, the system administrator (root) must first use the nvidia-smi utility to enable
the compute-exclusive mode on all GPUs in the system. With this mode enabled, running hoomd with no options or with the
--mode=gpu option will result in an automatic choice of the first free GPU from the prioritized list.

The compute-exclusive mode allows only a single CUDA application to run on each GPU. If you have
4 compute-exclusive GPUs available in the system, executing a fifth instance of hoomd with python script.py
will result in the error: ***Error! no CUDA-capable device is available.

Most compute clusters do not support automatic free GPU selection. Insteady the schedulers pin jobs to specific GPUs
and bind the host processes to attached cores. In this case, HOOMD uses the rank-based GPU selection
described above. HOOMD only applies exclusive mode automatic GPU selection when built without MPI support (ENABLE_MPI=off)
or executing on a single rank.



Minimize the CPU usage of HOOMD-blue

When hoomd is running on a GPU, it uses 100% of one CPU core by default. This CPU usage can be
decreased significantly by specifying the --minimize-cpu-usage command line option:

python script.py --minimize-cpu-usage





Enabling this option incurs a 10% overall performance reduction, but the CPU usage of hoomd is reduced to only
10% of a single CPU core.



Prevent HOOMD-blue from running on the display GPU

Running hoomd on the display GPU works just fine, but it does moderately slow the simulation and causes the display
to lag. If you wish to prevent hoomd from running on the display, add the --ignore-display-gpu command line flag:

python script.py --ignore-display-gpu







Enable error checking on the GPU

Detailed error checking is off by default to enable the best performance. If you have trouble
that appears to be caused by the failure of a calculation to run on the GPU, you
should run with GPU error checking enabled to check for any errors returned by the GPU.

To do this, run the script with the --gpu_error_checking command line option:

python script.py --gpu_error_checking







Control message output

You can adjust the level of messages written to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] by a running hoomd script.
Set the notice level to a high value to help debug where problems occur. Or set it to a low number to suppress messages.
Set it to 0 to remove all notices (warnings and errors are still output):

python script.py --notice-level=10





All messages (notices, warnings, and errors) can be redirected to a file. The file is overwritten:

python script.py --msg-file=messages.out





In MPI simulations, messages can be aggregated per partition. To write output for
partition 0,1,.. in files messages.0, messages.1, etc., use:

mpirun python script.py --shared-msg-file=messages







Set the MPI domain decomposition

When no MPI options are specified, HOOMD uses a minimum surface area selection of the domain decomposition strategy:

mpirun -n 8 python script.py
# 2x2x2 domain





The linear option forces HOOMD-blue to use a 1D slab domain decomposition, which may be faster than a 3D decomposition when running jobs on a single node:

mpirun -n 4 python script.py --linear
# 1x1x4 domain





You can also override the automatic choices completely:

mpirun -n 4 python script.py --nx=1 --ny=2 --nz=2
# 1x2x2 domain





You can group multiple MPI ranks into partitions, to simulate independent replicas:

mpirun -n 12 python script.py --nrank=3





This sub-divides the total of 12 MPI ranks into four independent partitions, with
to which 3 GPUs each are assigned.



User options

User defined options may be passed to a job script via --user and retrieved by calling hoomd.option.get_user(). For example,
if hoomd is executed with:

python script.py --gpu=2 --ignore-display-gpu --user="--N=5 --rho=0.5"





then hoomd.option.get_user() will return ['--N=5', '--rho=0.5'], which is a format suitable for processing by standard
tools such as optparse [https://docs.python.org/3/library/optparse.html#module-optparse].



Execution with CPU threads (Intel TBB support)

Some classes in HOOMD support CPU threads using Intel’s Threading Building Blocks (TBB). TBB can speed up the calculation considerably,
depending on the number of CPU cores available in the system. If HOOMD was compiled with support for TBB,
the number of threads can be set. On the command line, this is done using:

python script.py --mode=cpu --nthreads=20





Alternatively, the same option can be passed to hoomd.context.initialize(), and the number of threads can be updated any time
using hoomd.option.set_num_threads() . If no number of threads is specified, TBB by default uses all CPUs in the system.
For compatibility with OpenMP, HOOMD also honors a value set in the environment variable OMP_NUM_THREADS.






          

      

      

    

  

    
      
          
            
  
Units

HOOMD-blue stores and computes all values in a system of generic, fully self-consistent set of units.
No conversion factors need to be applied to values at every step. For example, a value with units
of force comes from dividing energy by distance.


Fundamental Units

The three fundamental units are:


	distance - \(\mathcal{D}\)


	energy - \(\mathcal{E}\)


	mass - \(\mathcal{M}\)




All other units that appear in HOOMD-blue are derived from these. Values can be converted into any other system
of units by assigning the desired units to \(\mathcal{D}\), \(\mathcal{E}\), and \(\mathcal{M}\) and then
multiplying by the appropriate conversion factors.

The standard Lennard-Jones symbols \(\sigma\) and \(\epsilon\) are intentionally not referred to here.
When you assign a value to \(\epsilon\) in hoomd, for example, you are assigning it in units of energy:
\(\epsilon = 5 \mathcal{E}\). \(\epsilon\) is NOT the unit of energy - it is a value with units of
energy.



Temperature (thermal energy)

HOOMD-blue accepts all temperature inputs and provides all temperature output values in units of energy:
\(k T\), where \(k\) is Boltzmann’s constant. When using physical units, the value \(k_\mathrm{B}\)
is determined by the choices for distance, energy, and mass. In reduced units, one usually reports the value
\(T^* = \frac{k T}{\mathcal{E}}\).

Most of the argument inputs in HOOMD take the argument name kT to make it explicit. A few areas of the code
may still refer to this as temperature.



Charge

The unit of charge used in HOOMD-blue is also reduced, but is not represented using just the 3 fundamental units -
the permittivity of free space \(\varepsilon_0\) is also present. The units of charge are:
\((4 \pi \varepsilon_0 \mathcal{D} \mathcal{E})^{1/2}\). Divide a given charge by this quantity to convert it into
an input value for HOOMD-blue.



Common derived units

Here are some commonly used derived units:


	time - \(\tau = \sqrt{\frac{\mathcal{M} \mathcal{D}^2}{\mathcal{E}}}\)


	volume - \(\mathcal{D}^3\)


	velocity - \(\frac{\mathcal{D}}{\tau}\)


	momentum - \(\mathcal{M} \frac{\mathcal{D}}{\tau}\)


	acceleration - \(\frac{\mathcal{D}}{\tau^2}\)


	force - \(\frac{\mathcal{E}}{\mathcal{D}}\)


	pressure - \(\frac{\mathcal{E}}{\mathcal{D}^3}\)






Example physical units

There are many possible choices of physical units that one can assign. One common choice is:


	distance - \(\mathcal{D} = \mathrm{nm}\)


	energy - \(\mathcal{E} = \mathrm{kJ/mol}\)


	mass - \(\mathcal{M} = \mathrm{amu}\)




Derived units / values in this system:


	time - picoseconds


	velocity - nm/picosecond


	k = 0.00831445986144858 kJ/mol/Kelvin








          

      

      

    

  

    
      
          
            
  
Periodic boundary conditions


Introduction

All simulations executed in HOOMD-blue occur in a triclinic simulation box with periodic boundary conditions in all
three directions. A triclinic box is defined by six values: the extents \(L_x\), \(L_y\) and \(L_z\) of the box
in the three directions, and three tilt factors \(xy\), \(xz\) and \(yz\).

The parameter matrix \(\mathbf{h}\) is defined in terms of the lattice vectors
\(\vec a_1\), \(\vec a_2\) and \(\vec a_3\):


\[\mathbf{h} \equiv \left( \vec a_1, \vec a_2, \vec a_3 \right)\]

By convention, the first lattice vector
\(\vec a_1\) is parallel to the unit vector \(\vec e_x = (1,0,0)\). The tilt factor
\(xy\) indicates how the second lattice vector \(\vec a_2\) is tilted with respect to the first one. It specifies
many units along the x-direction correspond to one unit of the second lattice vector. Similarly, \(xz\) and
\(yz\) indicate the tilt of the third lattice vector \(\vec a_3\) with respect to the first and second lattice
vector.



Definitions and formulas for the cell parameter matrix

The full cell parameter matrix is:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} L_x & xy L_y & xz L_z \\
                                        0   & L_y    & yz L_z \\
                                        0   & 0      & L_z    \\
                     \end{array}\right)
\end{eqnarray*}
The tilt factors \(xy\), \(xz\) and \(yz\) are dimensionless.
The relationships between the tilt factors and the box angles \(\alpha\),
\(\beta\) and \(\gamma\) are as follows:


\begin{eqnarray*}
\cos\gamma \equiv \cos(\angle\vec a_1, \vec a_2) &=& \frac{xy}{\sqrt{1+xy^2}}\\
\cos\beta \equiv \cos(\angle\vec a_1, \vec a_3) &=& \frac{xz}{\sqrt{1+xz^2+yz^2}}\\
\cos\alpha \equiv \cos(\angle\vec a_2, \vec a_3) &=& \frac{xy \cdot xz + yz}{\sqrt{1+xy^2} \sqrt{1+xz^2+yz^2}}
\end{eqnarray*}
Given an arbitrarily oriented lattice with box vectors \(\vec v_1, \vec v_2, \vec v_3\), the HOOMD-blue
box parameters for the rotated box can be found as follows.


\begin{eqnarray*}
L_x &=& v_1\\
a_{2x} &=& \frac{\vec v_1 \cdot \vec v_2}{v_1}\\
L_y &=& \sqrt{v_2^2 - a_{2x}^2}\\
xy &=& \frac{a_{2x}}{L_y}\\
L_z &=& \vec v_3 \cdot \frac{\vec v_1 \times \vec v_2}{\left| \vec v_1 \times \vec v_2 \right|}\\
a_{3x} &=& \frac{\vec v_1 \cdot \vec v_3}{v_1}\\
xz &=& \frac{a_{3x}}{L_z}\\
yz &=& \frac{\vec v_2 \cdot \vec v_3 - a_{2x}a_{3x}}{L_y L_z}
\end{eqnarray*}
Example:

# boxMatrix contains an arbitrarily oriented right-handed box matrix.
v[0] = boxMatrix[:,0]
v[1] = boxMatrix[:,1]
v[2] = boxMatrix[:,2]
Lx = numpy.sqrt(numpy.dot(v[0], v[0]))
a2x = numpy.dot(v[0], v[1]) / Lx
Ly = numpy.sqrt(numpy.dot(v[1],v[1]) - a2x*a2x)
xy = a2x / Ly
v0xv1 = numpy.cross(v[0], v[1])
v0xv1mag = numpy.sqrt(numpy.dot(v0xv1, v0xv1))
Lz = numpy.dot(v[2], v0xv1) / v0xv1mag
a3x = numpy.dot(v[0], v[2]) / Lx
xz = a3x / Lz
yz = (numpy.dot(v[1],v[2]) - a2x*a3x) / (Ly*Lz)







Initializing a system with a triclinic box

You can specify all parameters of a triclinic box in a GSD file.

You can also pass a hoomd.data.boxdim argument to the constructor of any initialization method. Here is an
example for hoomd.deprecated.init.create_random():

init.create_random(box=data.boxdim(L=18, xy=0.1, xz=0.2, yz=0.3), N=1000))





This creates a triclinic box with edges of length 18, and tilt factors
\(xy =0.1\), \(xz=0.2\) and \(yz=0.3\).

You can also specify a 2D box to any of the initialization methods:

init.create_random(N=1000, box=data.boxdim(xy=1.0, volume=2000, dimensions=2), min_dist=1.0)







Change the simulation box

The triclinic unit cell can be updated in various ways.


Resizing the box

The simulation box can be gradually resized during a simulation run using
hoomd.update.box_resize.

To update the tilt factors continuously during the simulation (shearing
the simulation box with Lees-Edwards boundary conditions), use:

update.box_resize(xy = variant.linear_interp([(0,0), (1e6, 1)]))





This command applies shear in the \(xy\) -plane so that the angle between the x
and y-directions changes continuously from 0 to \(45^\circ\) during \(10^6\) time steps.

hoomd.update.box_resize can change any or all of the six box parameters.



NPT or NPH integration

In a constant pressure ensemble, the box is updated every time step, according to the anisotropic stresses in the
system. This is supported by:


	hoomd.md.integrate.npt


	hoomd.md.integrate.nph









          

      

      

    

  

    
      
          
            
  
Rotational degrees of freedom


Overview

HOOMD-blue natively supports the integration of rotational degrees of freedom. Every particle in a hoomd simulation
may have rotational degrees of freedom. When any torque-producing potential or constraint is defined in the system,
integrators automatically integrate both the rotational and translational degrees of freedom of the system.
Anisotropic integration can also be explicitly enabled or disabled through the aniso argument of hoomd.md.integrate.mode_standard.
hoomd.md.pair.gb, hoomd.dem, hoomd.md.constrain.rigid are examples of potentials and
constraints that produce torques on particles.

The integrators detect what rotational degrees of freedom exist per particle. Each particle has a diagonal moment
of inertia tensor that specifies the moment of inertia about the 3 principle axes in the particle’s local reference
frame. Integrators only operate on rotational degrees of freedom about axes where the moment of inertia is non-zero.
Ensure that you set appropriate moments of inertia for all particles that have them in the system.

Particles have a number of properties related to rotation accessible using the particle data API (hoomd.data):



	orientation - Quaternion to rotate the particle from its base orientation to its current orientation, in the order \((real, imag_x, imag_y, imag_z)\)


	angular_momentum - Conjugate quaternion representing the particle’s angular momentum


	moment_inertia - principal moments of inertia \((I_{xx}, I_{yy}, I_{zz})\)


	net_torque - net torque on the particle in the global reference frame







GSD files store the orientation, moment of inertia, and angular momentum of particles.



Quaternions for angular momentum

Particle angular momenta are stored in quaternion form as defined in Kamberaj 2005 [http://dx.doi.org/10.1063/1.1906216] : the
angular momentum quaternion \(\mathbf{P}\) is defined with respect to the orientation quaternion of the
particle \(\mathbf{q}\) and the angular momentum of the particle, lifted into pure imaginary quaternion form
\(\mathbf{S}^{(4)}\) as:


\[\mathbf{P} = 2 \mathbf{q} \times \mathbf{S}^{(4)}\]

in other words, the angular momentum vector \(\vec{S}\) with respect to the principal axis of the particle is


\[\vec{S} = \frac{1}{2}im(\mathbf{q}^* \times \mathbf{P})\]

where \(\mathbf{q}^*\) is the conjugate of the particle’s orientation quaternion and \(\times\) is
quaternion multiplication.





          

      

      

    

  

    
      
          
            
  
Neighbor lists


Overview

Neighbor lists accelerate the search for pairs of atoms that are within a certain cutoff radius of each other.
They are most commonly used in hoomd.md.pair to accelerate the calculation of pair forces between
atoms. This significantly reduces the number of pairwise distances that are evaluated, which is
\(O(N^2)\) if all possible pairs are checked. A small buffer radius (skin layer) r_buff is typically
added to the cutoff radius so that the neighbor list can be computed less frequently. The neighbor list must only be
rebuilt any time a particle diffuses r_buff/2. However, increasing r_buff also increases
the number of particles that are included in the neighbor list, which slows down the pair force evaluation. A balance
can be obtained between the two by optimizing r_buff.

A simple neighbor list is built by checking all possible pairs of atoms periodically, which makes the overall algorithm
\(O(N^2)\). The neighbor list can be computed more efficiently using an acceleration structure which further
reduces the complexity of the problem. There are three accelerators implemented in HOOMD-blue:


	Cell list


	Stenciled cell list


	LBVH tree




More details for each can be found below and in M.P. Howard et al. 2016 [http://dx.doi.org/10.1016/j.cpc.2016.02.003] and
M.P. Howard et al. 2019 [https://doi.org/10.1016/j.commatsci.2019.04.004] . Each neighbor list style has its own advantages
and disadvantages that the user should consider on a case-by-case basis.



Cell list

The cell-list neighbor list (hoomd.md.nlist.cell) spatially sorts particles into bins that
are sized by the largest cutoff radius of all pair potentials attached to the neighbor list. For example, in the
figure below, there are small A particles and large B particles. The bin size is based on the cutoff radius of the
largest particles \(r_{\rm BB}\). To find neighbors, each particle searches the 27 cells that are adjacent to
its cell, which are shaded around each particle. Binning particles is O(N), and so neighbor search from the cell
list is also O(N).

[image: Cell list schematic]
This method is very efficient for systems with nearly monodisperse cutoffs, but performance degrades for large cutoff
radius asymmetries due to the significantly increased number of particles per cell and increased search volume. For
example, the small A particles, who have a majority of neighbors who are also A particles within cutoff \(r_{\rm AA}\)
must now search through the full volume defined by \(r_{\rm BB}\). In practice, we have found that this neighbor
list style is the best option for most users when the asymmetry between the largest and smallest cutoff radius is
less than 2:1, but the performance of hoomd.md.nlist.tree may still be competitive at smaller asymmetries.


Note

Users may find that the cell-list neighbor list consumes a significant amount of memory, especially on CUDA devices.
One cause of this can be non-uniform density distributions because the memory allocated for the cell list
is proportional the maximum number of particles in any cell. Another common cause is large system volumes combined
with small cutoffs, which results in a very large number of cells in the system. In these cases, consider using
hoomd.md.nlist.stencil or hoomd.md.nlist.tree.





Stenciled cell list

Performance of the simple cell-list can be improved in the size asymmetric case by basing the bin size of the cell
list on the smallest cutoff radius of all pair potentials attached to the neighbor list
(P.J. in’t Veld et al. 2008 [http://dx.doi.org/10.1016/j.cpc.2008.03.005]). From the previous example, the bin size is now based
on \(r_{\rm AA}\). A stencil is then constructed on a per-pair basis that defines the bins to search. Some particles
can now be excluded without distance check if they lie in bins outside the stencil. The small A particles only need
to distance check other A particles in the dark blue cells (dashed outline). This reduces both the number of distances
evaluations and the amount of particle data that is read.

[image: Stenciled cell list schematic]
We have found that the stenciled cell list (hoomd.md.nlist.stencil) is most useful when a cell list
performs well, but is too memory intensive. It may also be useful for some systems with modest size asymmetry or many
types. The memory consumed by the stenciled cell list is typically much lower than that used
for a comparable simple cell list because of the way the stencils constructed to query the cell list. However, this
comes at the expense of higher register usage on CUDA devices, which may lead to reduced performance compared to the
simple cell list in some cases depending on your CUDA device’s architecture.


Note

Users may still find that the stenciled cell list consumes a significant amount of memory for systems with large
volumes and small cutoffs. In this case, the bin size should be made larger (possibly at the expense of
performance), or hoomd.md.nlist.tree should be used instead.





LBVH tree

Linear bounding volume hierarchies (LBVHs) are an entirely different approach to accelerating the neighbor search.
LBVHs are binary tree structures that partition the system based on objects rather than space (see schematic below).
This means that the memory they require scales with the number of particles in the system rather than the system volume,
which may be particularly advantageous for large, sparse systems. Because of their lightweight memory footprint,
LBVHs can also be constructed per-type, and this makes searching the trees very efficient in size asymmetric systems.
The LBVH algorithm is O(N log N) to search the tree.

[image: LBVH tree schematic]
We have found that LBVHs (hoomd.md.nlist.tree) are very useful for systems with size asymmetry greater than 2:1 between the largest
and smallest cutoffs. These conditions are typical of many colloidal systems. Additionally, LBVHs can be used advantageously in sparse systems
or systems with large volumes, where they have less overhead and memory demands than cell lists. The performance of the
LBVHs has been improved since their original implementation (see M.P. Howard et al. 2019 [https://doi.org/10.1016/j.commatsci.2019.04.004]
for details), making them more competitive for different types of systems.



Multiple neighbor lists

Multiple neighbor lists can be created to accelerate simulations where there is significant disparity in the pairwise
cutoffs between pair potentials. If one pair force has a maximum cutoff radius much smaller than
another pair force, the pair force calculation for the short cutoff will be slowed down considerably because many
particles in the neighbor list will have to be read and skipped because they lie outside the shorter cutoff. Attaching
each potential to a different neighbor list may improve performance of the pair force calculation at the expense of
duplicate computation of the neighbor list. When using multiple neighbor lists, it may be advantageous to adopt two
different neighbor list styles. For example, in a colloidal suspension of a small number of large colloids dispersed
in many solvent particles, a modest performance gain may be achieved by computing the solvent-solvent neighbors using
hoomd.md.nlist.cell, but the solvent-colloid and colloid-colloid interactions using hoomd.md.nlist.tree.
Particles can be excluded from neighbor lists by setting their cutoff radius to False or a negative value.





          

      

      

    

  

    
      
          
            
  
MPI domain decomposition


Overview

HOOMD-blue supports multi-GPU (and multi-CPU) simulations using MPI. It uses
a spatial domain decomposition approach similar to the one used by LAMMPS.
Every GPU is assigned a sub-domain of the simulation box, the dimensions of which
are calculated by dividing the lengths of the simulation box by the
number of processors per dimension. These domain boundaries can also be adjusted
to different fractional widths while still maintaining a 3d grid, which can be
advantageous in systems with density gradients. The product of the number of processors along
all dimensions must equal the number of processors in the MPI job. As in single-GPU
simulations, there is a one-to-one mapping between host CPU cores (MPI ranks)
and the GPUs.

Job scripts do not need to be modified to take advantage of multi-GPU execution. However,
not all features are available in MPI mode. The list of single-GPU only features can be found below.

See J. Glaser et. al. 2015 [http://dx.doi.org/10.1016/j.cpc.2015.02.028] for more implementation details.



Compilation

For detailed compilation instructions, see Compile HOOMD-blue.

Compilation flags pertinent to MPI simulations are:


	ENABLE_MPI (to enable multi-GPU simulations, must be set to b ON)


	ENABLE_MPI_CUDA (optional, enables CUDA-aware MPI library support, see below)






Usage

To execute a hoomd job script on multiple GPUs, run:

mpirun -n 8 python script.py --mode=gpu





This will execute HOOMD on 8 processors. HOOMD automatically detects which GPUs are available and assigns them to MPI
ranks.  The syntax and name of the mpirun command may be different
between different MPI libraries and system architectures, check with your system documentation to find out what
launcher to use. When running on multiple nodes, the job script must be available to all nodes via a network file system.

HOOMD chooses the best spatial sub-division according to a minimum-area rule. If needed, the dimensions of the
decomposition be specified using the
linear, nx, ny and nz Command line options.
If your intention is to run HOOMD on a single GPU, you can
invoke HOOMD with no MPI launcher:

python script.py





instead of giving the -n 1 argument to mpirun.


Warning

Some cluster environments do not allow this and require the MPI launcher be used even for single rank jobs.



HOOMD-blue can also execute on many CPU cores in parallel:

mpirun -n 16 python script.py --mode=cpu







GPU selection in MPI runs

HOOMD-blue uses information from mpirun to determine the local rank on a node (0,1,2,…). Each rank will use the
GPU id matching the local rank modulus the number of GPUs on the node. In this mode, do not run more ranks per node than
there are GPUs or you will oversubscribe the GPUs. This selection mechanism selects GPUs from within the set of GPUs
provided by the cluster scheduler.

In some MPI stacks, such as Intel MPI, this information is unavailable and HOOMD falls back on selecting
gpu_id = global_rank % num_gpus_on_node and issues a notice message.
This mode only works on clusters where scheduling is performed by node (not by core) and there are a uniform
number of GPUs on each node.

In any case, a status message is printed on startup that lists which ranks are using which GPU ids. You can use this
to verify proper GPU selection.



Best practices

HOOMD-blue’s multi-GPU performance depends on many factors, such as the model of the
actual GPU used, the type of interconnect between nodes, whether the MPI library
supports CUDA, etc. Below we list some recommendations for obtaining optimal
performance.


System size

Performance depends greatly on system size. Runs with fewer particles per GPU will execute slower due to communications
overhead. HOOMD-blue has decent strong scaling down to small numbers of particles per GPU, but to obtain high efficiency
(more than 60%) typical benchmarks need 100,000 or more particles per GPU. You should benchmark your own system of
interest with short runs to determine a reasonable range of efficient scaling behavior. Different potentials and/or
cutoff radii can greatly change scaling behavior.



CUDA-aware MPI libraries

The main benefit of using a CUDA-enabled MPI library is that it enables intra-node
peer-to-peer (P2P) access between several GPUs on the same PCIe root complex, which increases
bandwidth. Secondarily, it may offer some additional optimization
for direct data transfer between the GPU and a network adapter.
To use these features with an MPI library that supports it,
set ENABLE_MPI_CUDA to ON for compilation.

Currently, we recommend building with ENABLE_MPI_CUDA OFF. On MPI libraries available at time of release,
enabling ENABLE_MPI_CUDA cuts performance in half. Systems with GPUDirect RDMA enabled improve on this somewhat,
but even on such systems typical benchmarks still run faster with ENABLE_MPI_CUDA OFF.



GPUDirect RDMA

HOOMD does support GPUDirect RDMA with network adapters that support it (i.e. Mellanox) and compatible GPUs (Kepler),
through a CUDA-aware MPI library (i.e. OpenMPI 1.7.5 or MVAPICH 2.0b GDR). On HOOMD’s side, nothing is required beyond setting
ENABLE_MPI_CUDA to ON before compilation. On the side of the MPI library, special flags may need to be set
to enable GPUDirect RDMA, consult the documentation of your MPI library for that.



Slab decomposition

For small numbers of GPUs per job (typically <= 8 for cubic boxes) that are non-prime,
the performance may be increased by using a slab decomposition.
A one-dimensional decomposition is enforced if the --linear
command line option (Command line options) is given.



Neighbor list buffer length (r_buff)

The optimum value of the r_buff value of the neighbor list
may be different between single- and multi-GPU runs. In multi-GPU
runs, the buffering length also determines the width of the ghost layer
runs and sets the size of messages exchanged between the processors.
To determine the optimum value, use hoomd.md.nlist.nlist.tune().
command with the same number of MPI ranks that will be used for the production simulation.



Running with multiple partitions (–nrank command-line option)

HOOMD-blue supports simulation of multiple independent replicas, with the same
number of GPUs per replica. To enable multi-replica mode, and to partition
the total number of ranks N into p = N/n replicas, where n is the
number of GPUs per replica, invoke HOOMD-blue with the –nrank=n
command line option (see Command line options).

Inside the command script, the current partition can be queried using
hoomd.comm.get_partition().




Dynamic load balancing

HOOMD-blue supports non-uniform domain decomposition for systems with density gradients. A static domain decomposition
on a regular 3d grid but non-uniform widths can be constructed using
hoomd.comm.decomposition. Here, either the number of processors in a uniform
decomposition or the fractional widths of \(n-1\) domains can be set. Dynamic load balancing can be applied
to any domain decomposition either one time or periodically throughout the simulation using
hoomd.update.balance. The domain boundaries are adjusted to attempt to place an
equal number of particles on each rank. The overhead from periodically updating the domain boundaries is reasonably
small, so most simulations with non-uniform particle distributions will benefit from periodic dynamic load balancing.


Troubleshooting


	
	My simulation does not run significantly faster on exactly two GPUs compared to one GPU.

	This is expected.  HOOMD uses special optimizations for single-GPU runs, which
means that there is no overhead due to MPI calls. The communication overhead can be
20-25% of the total performance, and is only incurred when running on more
than one GPU.







	
	I get a message saying “Bond incomplete”

	In multi-GPU simulations, there is an implicit restriction on the maximal length of a single
bond. A bond cannot be longer than half the local domain size. If this happens,
an error is thrown. The problem can be fixed by running HOOMD on fewer
processors, or with a larger box size.







	
	Simulations with large numbers of nodes are slow.

	In simulations involving many nodes, collective MPI calls can take a significant portion
of the run time. To find out if these are limiting you, run the simulation with
the profile=True option to the hoomd.run() command.
One reason for slow performance can be the distance check, which, by default,
is applied every step to check if the neighbor list needs to be rebuild. It requires
synchronization between all MPI ranks and is therefore slow.
See hoomd.md.nlist.nlist.set_params() to increase the interval (check_period)
between distance checks, to improve performance.







	
	My simulation crashes on multiple GPUs when I set ENABLE_MPI_CUDA=ON

	First, check that cuda-aware MPI support is enabled in your MPI library. Usually this is
determined at compile time of the MPI library. For MVAPICH2, HOOMD automatically sets
the required environment variable MV2_USE_CUDA=1. If you are using GPUDirect RDMA
in a dual-rail configuration,  special considerations need to be taken to ensure correct GPU-core affinity,
not doing so may result in crashing or slow simulations.














          

      

      

    

  

    
      
          
            
  
Autotuner


Overview

HOOMD-blue uses run-time autotuning to optimize GPU performance. Every time you run a hoomd script, hoomd starts
autotuning values from a clean slate. Performance may vary during the first time steps of a simulation when the
autotuner is scanning through possible values. Once the autotuner completes the first scan, performance will stabilize
at optimized values. After approximately period steps, the autotuner will activate again and perform a quick scan
to update timing data. With continual updates, tuned parameters will adapt to simulation conditions - so as you
switch your simulation from NVT to NPT, compress the box, or change forces, the autotuner will keep everything
running at optimal performance.



Benchmarking hoomd

Care must be taken in performance benchmarks. The initial warm up time of the tuner is significant, and performance
measurements should only be taken after warm up. The total time needed for a scan may vary from system to system
depending on parameters. For example, the lj-liquid-bmark script requires 10,000 steps for the initial
tuning pass (2000 for subsequent updates). You can monitor the autotuner with the command line option
--notice-level=4. Each tuner will print a status message when it completes the warm up period. The nlist_binned
tuner will most likely take the longest time to complete.

When obtaining profile traces, disable the autotuner after the warm up period so that it does not decide to re-tune
during the profile.



Controlling the autotuner

Default parameters should be sufficient for the autotuner to work well in almost any situation. Controllable parameters
are:


	period: Approximate number of time steps before retuning occurs


	enabled: Boolean to control whether the autotuner is enabled. If disabled after the warm up period, no retuning will
occur, but it will still use the found optimal values. If disabled during the warm up period, a warning is issued
and the system will use non-optimal values.




The defaults are period=100000, and enabled=True. Other parameters can be set by calling
hoomd.option.set_autotuner_params(). This period is short enough to
pick up changes after just a few hundred thousand time steps, but long enough so that the performance loss of occasionally
running at nonoptimal parameters is small (most per time step calls can complete tuning in less than 200 time steps).





          

      

      

    

  

    
      
          
            
  
Restartable jobs


Overview

The ideal restartable job is a single job script that can be resubmitted over and over again to the job queue system.
Each time the job starts, it picks up where it left off the last time and continues running until it is done.
You can put all the logic necessary to do this in the hoomd python script itself, keeping the submission script simple:

# job.sh
mpirun hoomd run.py





With a properly configured python script, qsub job.sh is all that is necessary to submit the first run,
continue a previous job that exited cleanly, and continue one that was prematurely killed.



Elements of a restartable script

A restartable needs to:



	Choose between an initial condition and the restart file when initializing.


	Write a restart file periodically.


	Set a phase for all analysis, dump, and update commands.


	Use hoomd.run_upto() to skip over time steps that were run in previous job submissions.


	Use only commands that are restart capable.


	Optionally ensure that jobs cleanly exit before the job walltime limit.








Choose the appropriate initialization file

Let’s assume that the initial condition for the simulation is in init.gsd, and restart.gsd is saved periodically
as the job runs. A single hoomd.init.read_gsd() command will load the restart file if it exists, otherwise it will load
the initial file. It is easiest to think about dump files, temperature ramps, etc… if init.gsd is at time step 0:

init.read_gsd(filename='init.gsd', restart='restart.gsd')





If you generate your initial configuration in python, you will need to add some logic to read restart.gsd if it
exists or generate if not. This logic is left as an exercise to the reader.



Write restart files

You cannot predict when a hardware failure will cause your job to fail, so you need to save restart files at regular
intervals as your run progresses. You will also need periodic restart files at a fast rate if you don’t manage wall
time to ensure clean job exits.

First, you need to select a restart period. The compute center you run on may offer a tool to help you determine
an optimal restart period in minutes. A good starting point is to write a restart file every hour. Based on performance
benchmarks, select a restart period in time steps:

dump.gsd(filename="restart.gsd", group=group.all(), truncate=True, period=10000, phase=0)







Use the phase option

Set a a phase >= 0 for all analysis routines, file dumps, and updaters you use with period > 1 (the default is 0).
With phase >= 0, these routines will continue to run in a restarted job on the correct timesteps as if the job had
not been restarted.

Do not use, phase=-1, as then these routines will start running immediately when a restart job begins:

dump.dcd(filename="trajectory.dcd", period=1e6, phase=0)
analyze.log(filename='temperature.log', quantities=['temperature'], period=5000, phase=0)
zeroer= update.zero_momentum(period=1e6, phase=0)







Use run_upto

hoomd.run_upto() runs the simulation up to timestep n. Use this in restartable jobs to allow them to run a
given number of steps, independent of the number of submissions needed to reach that:

run_upto(100e6)







Use restart capable commands

Most commands in hoomd that output to files are capable of appending to the end of a file so that restarted jobs
continue adding data to the file as if the job had never been restarted.

However, not all features in hoomd are capable of restarting. Some are not even capable of appending to files. See the
documentation for each individual command you use to tell whether it is compatible with restartable jobs.
For those that are restart capable, do not set overwrite=True, or each time the job restarts it will erase the file
and start writing a new one.

Some analysis routines in HOOMD-blue store internal state and may require a period that is commensurate with the
restart period. See the documentation on the individual command you use to see if this is the case.



Cleanly exit before the walltime limit

Job queues will kill your job when it reaches the walltime limit. HOOMD can stop your run before that happens and
give your job time to exit cleanly. Set the environment variable HOOMD_WALLTIME_STOP to enable this.
Any hoomd.run() or hoomd.run_upto() command will exit before the specified time is reached.
HOOMD monitors run performance and tries to ensure that it will end before HOOMD_WALLTIME_STOP.
Set the variable to a unix epoch time. For example in a job script that should run 12 hours, set HOOMD_WALLTIME_STOP
to 12 hours from now, minus 10 minutes to allow for job cleanup:

# job.sh
export HOOMD_WALLTIME_STOP=$((`date +%s` + 12 * 3600 - 10 * 60))
mpirun hoomd run.py





When using HOOMD_WALLTIME_STOP, hoomd.run() will throw the exception WalltimeLimitReached when it exits due to the walltime
limit. Catch this exception so that your job can exit cleanly. Also, make sure to write out a final restart file
at the end of your job so you have the final system state to continue from. Set the limit_multiple for the run to
the restart period so that any analyzers that must run commensurate with the restart file have a chance to run. If you
don’t use any such commands, you can omit limit_multiple and the run will be free to end on any time step:

gsd_restart = dump.gsd(filename="restart.gsd", group=group.all(), truncate=True, period=10000, phase=0)

try:
    run_upto(1e6, limit_multiple=10000)

    # Perform additional actions here that should only be done after the job has completed all time steps.
except WalltimeLimitReached:
    # Perform actions here that need to be done each time you run into the wall clock limit, or just pass
    pass

gsd_restart.write_restart()
# Perform additional job cleanup actions here. These will be executed each time the job ends due to reaching the
# walltime limit AND when the job completes all of its time steps.








Examples


Simple example

Here is a simple example that puts all of these elements together:

# job.sh
export HOOMD_WALLTIME_STOP=$((`date +%s` + 12 * 3600 - 10 * 60))
mpirun hoomd run.py





# run.py
from hoomd import *
from hoomd import md
context.initialize()

init.read_gsd(filename='init.gsd', restart='restart.gsd')

lj = md.pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

md.integrate.mode_standard(dt=0.005)
md.integrate.nvt(group=group.all(), T=1.2, tau=0.5)

gsd_restart = dump.gsd(filename="restart.gsd", group=group.all(), truncate=True, period=10000, phase=0)
dump.dcd(filename="trajectory.dcd", period=1e5, phase=0)
analyze.log(filename='temperature.log', quantities=['temperature'], period=5000, phase=0)

try:
    run_upto(1e6, limit_multiple=10000)
except WalltimeLimitReached:
    pass

gsd_restart.write_restart()







Temperature ramp

Runs often have temperature ramps. These are trivial to make restartable using a variant. Just be sure to set
the zero=0 option so that the ramp starts at timestep 0 and does not begin at the top every time the job is submitted.
The only change needed from the previous simple example is to use the variant in integrate.nvt():

T_variant = variant.linear_interp(points = [(0, 2.0), (2e5, 0.5)], zero=0)
integrate.nvt(group=group.all(), T=T_variant, tau=0.5)







Multiple stage jobs

Not all ramps or staged job protocols can be expressed as variants. However, it is easy to implement multi-stage jobs
using run_upto and HOOMD_WALLTIME_STOP. Here is an example of a more complex job that involves multiple stages:

# run.py
from hoomd import *
from hoomd import md
context.initialize()

init.read_gsd(filename='init.gsd', restart='restart.gsd')

lj = md.pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

md.integrate.mode_standard(dt=0.005)

gsd_restart = dump.gsd(filename="restart.gsd", group=group.all(), truncate=True, period=10000, phase=0)

try:
    # randomize at high temperature
    nvt = md.integrate.nvt(group=group.all(), T=5.0, tau=0.5)
    run_upto(1e6, limit_multiple=10000)

    # equilibrate
    nvt.set_params(T=1.0)
    run_upto(2e6, limit_multiple=10000)

    # switch to nve and start saving data for the production run
    nvt.disable();
    md.integrate.nve(group=group.all())
    dump.dcd(filename="trajectory.dcd", period=1e5, phase=0)
    analyze.log(filename='temperature.log', quantities=['temperature'], period=5000, phase=0)

    run_upto(12e6);

except WalltimeLimitReached:
    pass

gsd_restart.write_restart()





And here is another example that changes interaction parameters:

try:
    for i in range(1,11):
        lj.pair_coeff.set('A', 'A', epsilon=0.1*i)
        run_upto(1e6*i);
except WalltimeLimitReached:
    pass







Multiple hoomd invocations

HOOMD_WALLTIME_STOP is a global variable set at the start of a job script. So you can launch hoomd scripts multiple times
from within a job script and any of those individual runs will exit cleanly when it reaches the walltime. You need
to take care that you don’t start any new scripts once the first exits due to a walltime limit.
The BASH script logic necessary to implement this behavior is workflow dependent and left as an exercise to
the reader.






          

      

      

    

  

    
      
          
            
  
Variable period specification

Most updaters and analyzers in hoomd accept a variable period specification.
Just specify a function taking a single argument to the period parameter.

For example, dump gsd files at time steps 1, 10, 100, 1000, …:

dump.gsd(filename="dump.gsd", period = lambda n: 10**n)





More examples:

dump.gsd(filename="dump.gsd", period = lambda n: n**2)
dump.gsd(filename="dump.gsd", period = lambda n: 2**n)
dump.gsd(filename="dump.gsd", period = lambda n: 1005 + 0.5 * 10**n)





The object passed into period must be callable, accept one argument, and return
a floating point number or integer. The function should also be monotonically increasing.


	First, the current time step of the simulation is saved when the analyzer is created.


	n is also set to 1 when the analyzer is created


	Every time the analyzer performs it’s output, it evaluates the given function at the current value of n
and records that as the next time step to perform the analysis. n is then incremented by 1







          

      

      

    

  

    
      
          
            
  
Developer Topics


Plugins and Components

HOOMD-Blue can be tuned for particular use cases in several ways. Many smaller workloads and higher-level use
cases can be handled through python-level hoomd.run() callbacks. For heavier-duty work such as pair
potential evaluation, HOOMD-Blue can be extended through components. Components provide sets of
functionality with a common overarching goal; for example, the hoomd.hpmc component provides code
for hard particle Monte Carlo methods within HOOMD-Blue.

Components can be compiled and installed as builtin components or as external components. Builtin
components are built and installed alongside the rest of HOOMD-Blue, while external components are compiled
after HOOMD-Blue has already been compiled and installed at its destination. They have the same capabilities,
but builtin components are simpler to build while external components are more flexible for packaging
purposes.

The HOOMD-Blue source provides an example component template in the example_plugin subdirectory which
supports installation either as a builtin component or as an external component, depending on how it is
configured.

To set up the example component as a builtin component, simply create a symbolic link to the internal
example_plugin directory (example_plugin/example_plugin) inside the hoomd subdirectory:

$ cd /path/to/hoomd-blue/hoomd
$ ln -s ../example_plugin/example_plugin example_plugin
$ cd ../build && make install





Note that this has already been done for the case of the example component.

Alternatively, one can use the example component as an external component. This relies on the
FindHOOMD.cmake cmake script to set up cmake in a way that closely mirrors the cmake environment that HOOMD
Blue was originally compiled with. The process is very similar to the process of installing HOOMD Blue
itself. For ease of configuration, it is best to make sure that the hoomd module that is automatically
imported by python is the one you wish to configure the component against and install to:

$ cd /path/to/component
$ mkdir build && cd build
$ # This python command should print the location you wish to install into
$ python -c 'import hoomd;print(hoomd.__file__)'
$ # Add any extra cmake arguments you need here (like -DPYTHON_EXECUTABLE)
$ cmake ..
$ make install









          

      

      

    

  

    
      
          
            
  
hoomd

Overview







	hoomd.get_step

	Get the current simulation time step.



	hoomd.run

	Runs the simulation for a given number of time steps.



	hoomd.run_upto

	Runs the simulation up to a given time step number.






Details

HOOMD-blue python API

hoomd provides a high level user interface for executing
simulations using HOOMD:

import hoomd
from hoomd import md
hoomd.context.initialize()

# create a 10x10x10 square lattice of particles with name A
hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=2.0, type_name='A'), n=10)
# specify Lennard-Jones interactions between particle pairs
nl = md.nlist.cell()
lj = md.pair.lj(r_cut=3.0, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
# integrate at constant temperature
all = hoomd.group.all();
md.integrate.mode_standard(dt=0.005)
hoomd.md.integrate.langevin(group=all, kT=1.2, seed=4)
# run 10,000 time steps
hoomd.run(10e3)





Stability

hoomd is stable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts that follow documented interfaces for functions and classes
will not require any modifications. Maintainer: Joshua A. Anderson


Attention

This stability guarantee only applies to modules in the hoomd package.
Subpackages (hoomd.hpmc, hoomd.md, etc…) may or may not
have a stable API. The documentation for each subpackage specifies the level of
API stability it provides.




	
hoomd.get_step()

	Get the current simulation time step.


	Returns

	The current simulation time step.





Example:

print(hoomd.get_step())










	
hoomd.run(tsteps, profile=False, limit_hours=None, limit_multiple=1, callback_period=0, callback=None, quiet=False)

	Runs the simulation for a given number of time steps.


	Parameters

	
	tsteps (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to advance the simulation.


	profile (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to enable high level profiling output at the end of the run.


	limit_hours (float [https://docs.python.org/3/library/functions.html#float]) – If not None, limit this run to a given number of hours.


	limit_multiple (int [https://docs.python.org/3/library/functions.html#int]) – When stopping the run due to walltime limits, only stop when the time step is a
multiple of limit_multiple.


	callback (callable) – Sets a Python function to be called regularly during a run.


	callback_period (int [https://docs.python.org/3/library/functions.html#int]) – Sets the period, in time steps, between calls made to callback.


	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to disable the status information printed to the screen by the run.








Example:

hoomd.run(10)
hoomd.run(10e6, limit_hours=1.0/3600.0, limit_multiple=10)
hoomd.run(10, profile=True)
hoomd.run(10, quiet=True)
hoomd.run(10, callback_period=2, callback=lambda step: print(step))





Execute the run() command to advance the simulation forward in time.
During the run, all previously specified analyzers, updaters and the integrator
are executed at the specified regular periods.

After run() completes, you may change parameters of the simulation
and continue the simulation by executing run() again. Time steps are added
cumulatively, so calling run(1000) and then run(2000) would run the simulation
up to time step 3000.

run() cannot be executed before the system is initialized. In most
cases, run() should only be called after after pair forces, bond forces,
and an integrator are specified.

When profile is True, a detailed breakdown of how much time was spent in each
portion of the calculation is printed at the end of the run. Collecting this timing information
slows the simulation.

Wallclock limited runs:

There are a number of mechanisms to limit the time of a running hoomd script. Use these in a job
queuing environment to allow your script to cleanly exit before reaching the system enforced walltime limit.

Force run() to end only on time steps that are a multiple of limit_multiple. Set this to the period at which you
dump restart files so that you always end a run() cleanly at a point where you can restart from. Use
phase=0 on logs, file dumps, and other periodic tasks. With phase=0, these tasks will continue on the same
sequence regardless of the restart period.

Set the environment variable HOOMD_WALLTIME_STOP prior to starting a hoomd script to stop the run() at a given wall
clock time. run() monitors performance and tries to ensure that it will end before HOOMD_WALLTIME_STOP. This
environment variable works even with multiple stages of runs in a script (use run_upto(). Set the variable to
a unix epoch time. For example in a job script that should run 12 hours, set HOOMD_WALLTIME_STOP to 12 hours from
now, minus 10 minutes to allow for job cleanup:

export HOOMD_WALLTIME_STOP=$((`date +%s` + 12 * 3600 - 10 * 60))





When using HOOMD_WALLTIME_STOP, run() will throw the exception WalltimeLimitReached if it exits due to the walltime
limit.

limit_hours is another way to limit the length of a run(). Set it to a number of hours (use fractional values for
minutes) to limit this particular run() to that length of time. This is less useful than HOOMD_WALLTIME_STOP in a
job queuing environment.

Callbacks:

If callback is set to a Python function then this function will be called regularly
at callback_period intervals. The callback function must receive one integer as argument
and can return an integer. The argument passed to the callback is the current time step number.
If the callback function returns a negative number, the run is immediately aborted.

If callback_period is set to 0 (the default) then the callback is only called
once at the end of the run. Otherwise the callback is executed whenever the current
time step number is a multiple of callback_period.






	
hoomd.run_upto(step, **keywords)

	Runs the simulation up to a given time step number.


	Parameters

	
	step (int [https://docs.python.org/3/library/functions.html#int]) – Final time step of the simulation which to run


	keywords – Catch for all keyword arguments to pass on to run()








run_upto() runs the simulation, but only until it reaches the given time step. If the simulation has already
reached the specified step, a message is printed and no simulation steps are run.

It accepts all keyword options that run() does.

Examples:

run_upto(1000)
run_upto(10000, profile=True)
run_upto(1e9, limit_hours=11)









Modules



	hoomd.analyze

	hoomd.benchmark

	hoomd.cite

	hoomd.comm

	hoomd.compute

	hoomd.context

	hoomd.data

	hoomd.dump

	hoomd.group

	hoomd.init

	hoomd.lattice

	hoomd.meta

	hoomd.option

	hoomd.update

	hoomd.util

	hoomd.variant

	hoomd.hdf5








          

      

      

    

  

    
      
          
            
  
hoomd.analyze

Overview







	hoomd.analyze.callback

	Callback analyzer.



	hoomd.analyze.imd

	Send simulation snapshots to VMD in real-time.



	hoomd.analyze.log

	Log a number of calculated quantities to a file.






Details

Commands that analyze the system and provide some output.

An analyzer examines the system state in some way every period time steps and generates
some form of output based on the analysis. Check the documentation for individual analyzers
to see what they do.


	
class hoomd.analyze.callback(callback, period, phase=0)

	Callback analyzer.


	Parameters

	
	callback (callable) – The python callback object


	period (int [https://docs.python.org/3/library/functions.html#int]) – The callback is called every a period time steps


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








Create an analyzer that runs a given python callback method at a defined period.

Examples:

def my_callback(timestep):
  print(timestep)

analyze.callback(callback = my_callback, period = 100)






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.










	
class hoomd.analyze.imd(port, period=1, rate=1, pause=False, force=None, force_scale=0.1, phase=0)

	Send simulation snapshots to VMD in real-time.


	Parameters

	
	port (int [https://docs.python.org/3/library/functions.html#int]) – TCP/IP port to listen on.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to run before checking for new IMD messages.


	rate (int [https://docs.python.org/3/library/functions.html#int]) – Number of periods between coordinate data transmissions.


	pause (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to pause the simulation at the first time step until an imd connection is made.


	force (hoomd.md.force.constant) – A force that apply forces received from VMD.


	force_scale (float [https://docs.python.org/3/library/functions.html#float]) – Factor by which to scale all forces received from VMD.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








hoomd.analyze.imd listens on a specified TCP/IP port for connections from VMD.
Once that connection is established, it begins transmitting simulation snapshots
to VMD every rate time steps.

To connect to a simulation running on the local host, issue the command:

imd connect localhost 54321





in the VMD command window (where 54321 is replaced with the port number you specify for
hoomd.analyze.imd.


Note

If a period larger than 1 is set, the actual rate at which time steps are transmitted is rate * period.



Examples:

analyze.imd(port=54321, rate=100)
analyze.imd(port=54321, rate=100, pause=True)
imd = analyze.imd(port=12345, rate=1000)






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.










	
class hoomd.analyze.log(filename, quantities, period, header_prefix='', overwrite=False, phase=0)

	Log a number of calculated quantities to a file.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to write the log to, or None for no file output.


	quantities (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of quantities to log.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Quantities are logged every period time steps.


	header_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify a string to print before the header.


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – When False (the default) an existing log will be appended to. When True, an existing log file will be overwritten instead.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








hoomd.analyze.log reads a variety of calculated values, like energy and temperature, from
specified forces, integrators, and updaters. It writes a single line to the specified
output file every period time steps. The resulting file is suitable for direct import
into a spreadsheet, MATLAB, or other software that can handle simple delimited files.
See Units for information on the units in hoomd.

Quantities that can be logged at any time:


	volume - Volume of the simulation box (in volume units)


	N - Particle number (dimensionless)


	lx - Box length in x direction (in length units)


	ly - Box length in y direction (in length units)


	lz - Box length in z direction (in length units)


	xy - Box tilt factor in xy plane (dimensionless)


	xz - Box tilt factor in xz plane (dimensionless)


	yz - Box tilt factor in yz plane (dimensionless)


	momentum - Magnitude of the average momentum of all particles (in momentum units)


	time - Wall-clock running time from the start of the log (in seconds)




Thermodynamic properties:
- The following quantities are always available and computed over all particles in the system (see hoomd.compute.thermo for detailed definitions):



	num_particles


	ndof


	translational_ndof


	rotational_ndof


	potential_energy (in energy units)


	kinetic_energy (in energy units)


	translational_kinetic_energy (in energy units)


	rotational_kinetic_energy (in energy units)


	temperature (in thermal energy units)


	pressure (in pressure units)


	pressure_xx, pressure_xy, pressure_xz, pressure_yy, pressure_yz, pressure_zz (in pressure units)








	The above quantities, tagged with a _groupname suffix are automatically available for any group passed to
an integrate command


	Specify a compute.thermo directly to enable additional quantities for user-specified groups.




The following quantities are only available if the command is parentheses has been specified and is active
for logging:


	Pair potentials


	pair_dpd_energy (hoomd.md.pair.dpd) - Total DPD conservative potential energy (in energy units)


	pair_dpdlj_energy (hoomd.md.pair.dpdlj) - Total DPDLJ conservative potential energy (in energy units)


	pair_eam_energy (hoomd.metal.pair.eam) - Total EAM potential energy (in energy units)


	pair_ewald_energy (hoomd.md.pair.ewald) - Short ranged part of the electrostatic energy (in energy units)


	pair_gauss_energy (hoomd.md.pair.gauss) - Total Gaussian potential energy (in energy units)


	pair_lj_energy (hoomd.md.pair.lj) - Total Lennard-Jones potential energy (in energy units)


	pair_morse_energy (hoomd.md.pair.yukawa) - Total Morse potential energy (in energy units)


	pair_table_energy (hoomd.md.pair.table) - Total potential energy from Tabulated potentials (in energy units)


	pair_slj_energy (hoomd.md.pair.slj) - Total Shifted Lennard-Jones potential energy (in energy units)


	pair_yukawa_energy (hoomd.md.pair.yukawa) - Total Yukawa potential energy (in energy units)


	pair_force_shifted_lj_energy (hoomd.md.pair.force_shifted_lj) - Total Force-shifted Lennard-Jones potential energy (in energy units)


	pppm_energy (hoomd.md.charge.pppm) -  Long ranged part of the electrostatic energy (in energy units)






	Bond potentials


	bond_fene_energy (hoomd.md.bond.fene) - Total fene bond potential energy (in energy units)


	bond_harmonic_energy (hoomd.md.bond.harmonic) - Total harmonic bond potential energy (in energy units)


	bond_table_energy (hoomd.md.bond.table) - Total table bond potential energy (in energy units)






	Angle potentials


	angle_harmonic_energy (hoomd.md.angle.harmonic) - Total harmonic angle potential energy (in energy units)






	Dihedral potentials


	dihedral_harmonic_energy (hoomd.md.dihedral.harmonic) - Total harmonic dihedral potential energy (in energy units)






	Special pair interactions
- special_pair_lj_energy (hoomd.md.special_pair.lj) - Total energy of special pair interactions (in energy units)


	External potentials


	external_periodic_energy (hoomd.md.external.periodic) - Total periodic potential energy (in energy units)


	external_e_field_energy (hoomd.md.external.e_field) - Total e_field potential energy (in energy units)






	Wall potentials


	external_wall_lj_energy (hoomd.md.wall.lj) - Total Lennard-Jones wall energy (in energy units)


	external_wall_gauss_energy (hoomd.md.wall.gauss) - Total Gauss wall energy (in energy units)


	external_wall_slj_energy (hoomd.md.wall.slj) - Total Shifted Lennard-Jones wall energy (in energy units)


	external_wall_yukawa_energy (hoomd.md.wall.yukawa) - Total Yukawa wall energy (in energy units)


	external_wall_mie_energy (hoomd.md.wall.mie) - Total Mie wall energy (in energy units)






	Integrators


	langevin_reservoir_energy_groupname (hoomd.md.integrate.langevin) - Energy reservoir for the Langevin integrator (in energy units)


	nvt_reservoir_energy_groupname (hoomd.md.integrate.nvt) - Energy reservoir for the NVT thermostat (in energy units)


	nvt_mtk_reservoir_energy_groupname (hoomd.md.integrate.nvt) - Energy reservoir for the NVT MTK thermostat (in energy units)


	npt_thermostat_energy (hoomd.md.integrate.npt) - Energy of the NPT thermostat


	npt_barostat_energy (hoomd.md.integrate.npt & hoomd.md.integrate.nph) - Energy of the NPT (or NPH) barostat








Additionally, all pair and bond potentials can be provided user-defined names that are appended as suffixes to the
logged quantity (e.g. with pair.lj(r_cut=2.5, name="alpha"), the logged quantity would be pair_lj_energy_alpha):

By specifying a force, disabling it with the log=True option, and then logging it, different energy terms can
be computed while only a subset of them actually drive the simulation. Common use-cases of this capability
include separating out pair energy of given types (shown below) and free energy calculations. Be aware that the
globally chosen r_cut value is the largest of all active pair potentials and those with log=True, so you will
observe performance degradation if you disable(log=True) a potential with a large r_cut.

File output from analyze.log is optional. Specify None for the file name and no file will be output.
Use this with the query() method to query the values of properties without the overhead of writing them
to disk.

You can register custom python callback functions to provide logged quantities with register_callback().

Examples:

lj1 = pair.lj(r_cut=3.0, name="lj1")
lj1.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
lj1.pair_coeff.set('A', 'B', epsilon=1.0, sigma=1.0)
lj1.pair_coeff.set('B', 'B', epsilon=1.0, sigma=1.0)

lj2 = pair.lj(r_cut=3.0, name="lj2")
lj2.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
lj2.pair_coeff.set('A', 'B', epsilon=0.0, sigma=1.0)
lj2.pair_coeff.set('B', 'B', epsilon=0.0, sigma=1.0)
lj2.disable(log=True)

analyze.log(filename='mylog.log', quantities=['pair_lj_energy_lj1', 'pair_lj_energy_lj2'],
            period=100, header_prefix='#')


logger = analyze.log(filename='mylog.log', period=100,
                     quantities=['pair_lj_energy'])

analyze.log(quantities=['pair_lj_energy', 'bond_harmonic_energy',
            'kinetic_energy'], period=1000, filename='full.log')

analyze.log(filename='mylog.log', quantities=['pair_lj_energy'],
            period=100, header_prefix='#')

analyze.log(filename='mylog.log', quantities=['bond_harmonic_energy'],
            period=10, header_prefix='Log of harmonic energy, run 5\\n')
logger = analyze.log(filename='mylog.log', period=100,
                     quantities=['pair_lj_energy'], overwrite=True)

log = analyze.log(filename=None, quantities=['potential_energy'], period=1)
U = log.query('potential_energy')





By default, columns in the log file are separated by tabs, suitable for importing as a
tab-delimited spreadsheet. The delimiter can be changed to any string using set_params()

The header_prefix can be used in a number of ways. It specifies a simple string that
will be printed before the header line of the output file. One handy way to use this
is to specify header_prefix=’#’ so that gnuplot will ignore the header line
automatically. Another use-case would be to specify a descriptive line containing
details of the current run. Examples of each of these cases are given above.


Warning

When an existing log is appended to, the header is not printed. For the log to
remain consistent with the header already in the file, you must specify the same quantities
to log and in the same order for all runs of hoomd that append to the same log.




	
disable()

	Disable the logger.

Examples:

logger.disable()





Executing the disable command will remove the logger from the system.
Any hoomd.run() command executed after disabling the logger will not use that
logger during the simulation. A disabled logger can be re-enabled
with enable().






	
enable()

	Enables the logger

Examples:

logger.enable()





See disable().






	
query(quantity)

	Get the current value of a logged quantity.


	Parameters

	quantity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the quantity to return.





query() works in two different ways depending on how the logger is configured. If the logger is writing
to a file, query() returns the last value written to the file.
If filename is None, then query() returns the value of the quantity computed at the current timestep.

Examples:

logdata = logger.query('pair_lj_energy')
log = analyze.log(filename=None, quantities=['potential_energy'], period=1)
U = log.query('potential_energy')










	
register_callback(name, callback)

	Register a callback to produce a logged quantity.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the quantity


	callback (callable) – A python callable object (i.e. a lambda, function, or class that implements __call__)








The callback method must take a single argument, the current
timestep, and return a single floating point value to be
logged.


Note

One callback can query the value of another, but logged quantities are evaluated in order from left to right.



Examples:

logger = analyze.log(filename='log.dat', quantities=['my_quantity', 'cosm'], period=100)
logger.register_callback('my_quantity', lambda timestep: timestep**2)
logger.register_callback('cosm', lambda timestep: math.cos(logger.query('my_quantity')))










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(quantities=None, delimiter=None)

	Change the parameters of the log.


	Parameters

	
	quantities (list [https://docs.python.org/3/library/stdtypes.html#list]) – New list of quantities to log (if specified)


	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) – New delimiter between columns in the output file (if specified)








Examples:

logger.set_params(quantities=['bond_harmonic_energy'])
logger.set_params(delimiter=',');
logger.set_params(quantities=['bond_harmonic_energy'], delimiter=',');










	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.












          

      

      

    

  

    
      
          
            
  
hoomd.benchmark

Overview







	hoomd.benchmark.series

	Perform a series of benchmark runs.






Details

Benchmark utilities

Commands that help in benchmarking HOOMD-blue performance.


	
hoomd.benchmark.series(warmup=100000, repeat=20, steps=10000, limit_hours=None)

	Perform a series of benchmark runs.


	Parameters

	
	warmup (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to hoomd.run() to warm up the benchmark


	repeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to repeat the benchmark steps.


	steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to hoomd.run() at each benchmark point.


	limit_hours (float [https://docs.python.org/3/library/functions.html#float]) – Limit each individual hoomd.run() length to this time.








series() executes warmup time steps. After that, it
calls run(steps), repeat times and returns a list containing the average TPS for each of those runs.








          

      

      

    

  

    
      
          
            
  
hoomd.cite

Overview







	hoomd.cite.save

	Saves the automatically generated bibliography to a BibTeX file






Details

Commands to support automatic citation generation.

Certain features of HOOMD-blue should be cited because they represent significant contributions from developers.
In order to make these citations transparent and easy, HOOMD-blue will automatically print citation notices at run
time when you use a feature that should be cited. Users should read and cite these publications in their work.
Citations can be saved as a BibTeX file for easy incorporation into bibliographies.


	
hoomd.cite.save(file='hoomd.bib')

	Saves the automatically generated bibliography to a BibTeX file


	Parameters

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name for the saved bibliography





After save() is called for the first time, the bibliography will (re-)generate each time that a new feature is added
to ensure that all citations have been included. If file already exists, it will be overwritten.

Examples:

cite.save()
cite.save(file='cite.bib')












          

      

      

    

  

    
      
          
            
  
hoomd.comm

Overview







	hoomd.comm.barrier

	Perform a MPI barrier synchronization across all ranks in the partition.



	hoomd.comm.barrier_all

	Perform a MPI barrier synchronization across the whole MPI run.



	hoomd.comm.decomposition

	Set the domain decomposition.



	hoomd.comm.get_num_ranks

	Get the number of ranks in this partition.



	hoomd.comm.get_partition

	Get the current partition index.



	hoomd.comm.get_rank

	Get the current rank.






Details

MPI communication interface

Use methods in this module to query the number of MPI ranks, the current rank, etc…


	
hoomd.comm.barrier()

	Perform a MPI barrier synchronization across all ranks in the partition.


Note

Does nothing in in non-MPI builds.








	
hoomd.comm.barrier_all()

	Perform a MPI barrier synchronization across the whole MPI run.


Note

Does nothing in in non-MPI builds.








	
class hoomd.comm.decomposition(x=None, y=None, z=None, nx=None, ny=None, nz=None)

	Set the domain decomposition.


	Parameters

	
	x (list [https://docs.python.org/3/library/stdtypes.html#list]) – First nx-1 fractional domain widths (if nx is None)


	y (list [https://docs.python.org/3/library/stdtypes.html#list]) – First ny-1 fractional domain widths (if ny is None)


	z (list [https://docs.python.org/3/library/stdtypes.html#list]) – First nz-1 fractional domain widths (if nz is None)


	nx (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in x dimension (if x is None)


	ny (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in y dimension (if y is None)


	nz (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in z dimension (if z is None)








A single domain decomposition is defined for the simulation.
A standard domain decomposition divides the simulation box into equal volumes along the Cartesian axes while minimizing
the surface area between domains. This works well for systems where particles are uniformly distributed and
there is equal computational load for each domain, and is the default behavior in HOOMD-blue. If no decomposition is
specified for an MPI run, a uniform decomposition is automatically constructed on initialization.

In simulations with density gradients, such as a vapor-liquid interface, there can be a considerable imbalance of
particles between different ranks. The simulation time then becomes limited by the slowest processor. It may then be
advantageous in certain systems to create domains of unequal volume, for example, by increasing the volume of less
dense regions of the simulation box in order to balance the number of particles.

The decomposition command allows the user to control the geometry and positions of the decomposition.
The fractional width of the first \(n_i - 1\) domains is specified along each dimension, where
\(n_i\) is the number of ranks desired along dimension \(i\). If no cut planes are specified, then a uniform
spacing is assumed. The number of domains with uniform spacing can also be specified. If the desired decomposition
is not commensurate with the number of ranks available (for example, a 3x3x3 decomposition when only 8 ranks are
available), then a default uniform spacing is chosen. For the best control, the user should specify the number of
ranks in each dimension even if uniform spacing is desired.

decomposition can only be called before the system is initialized, at which point the particles are decomposed.
An error is raised if the system is already initialized.

The decomposition can be adjusted dynamically if the best static decomposition is not known, or the system
composition is changing dynamically. For this associated command, see update.balance().

Priority is always given to specified arguments over the command line arguments. If one of these is not set but
a command line option is, then the command line option is used. Otherwise, a default decomposition is chosen.

Examples:

comm.decomposition(x=0.4, ny=2, nz=2)
comm.decomposition(nx=2, y=0.8, z=[0.2,0.3])






Warning

The decomposition command will override specified command line options.




Warning

This command must be invoked before the system is initialized because particles are decomposed at this time.




Note

The domain size cannot be chosen arbitrarily small. There are restrictions placed on the decomposition by the
ghost layer width set by the pair potentials. An error will be raised at run time if the ghost layer width
exceeds half the shortest domain size.




Warning

Both fractional widths and the number of processors cannot be set simultaneously, and an error will be
raised if both are set.




	
set_params(x=None, y=None, z=None, nx=None, ny=None, nz=None)

	Set parameters for the decomposition before initialization.


	Parameters

	
	x (list [https://docs.python.org/3/library/stdtypes.html#list]) – First nx-1 fractional domain widths (if nx is None)


	y (list [https://docs.python.org/3/library/stdtypes.html#list]) – First ny-1 fractional domain widths (if ny is None)


	z (list [https://docs.python.org/3/library/stdtypes.html#list]) – First nz-1 fractional domain widths (if nz is None)


	nx (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in x dimension (if x is None)


	ny (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in y dimension (if y is None)


	nz (int [https://docs.python.org/3/library/functions.html#int]) – Number of processors to uniformly space in z dimension (if z is None)








Examples:

decomposition.set_params(x=[0.2])
decomposition.set_params(nx=1, y=[0.3,0.4], nz=2)














	
hoomd.comm.get_num_ranks()

	Get the number of ranks in this partition.


	Returns

	The number of MPI ranks in this partition.






Note

Returns 1 in non-mpi builds.








	
hoomd.comm.get_partition()

	Get the current partition index.


	Returns

	Index of the current partition.






Note

Always returns 0 in non-mpi builds.








	
hoomd.comm.get_rank()

	Get the current rank.


	Returns

	Index of the current rank in this partition.






Note

Always returns 0 in non-mpi builds.










          

      

      

    

  

    
      
          
            
  
hoomd.compute

Overview







	hoomd.compute.thermo

	Compute thermodynamic properties of a group of particles.






Details

Compute system properties

A compute calculates properties of the system on demand. Most computes are automatically generated by the command
that needs them (e.g. integrate.nvt creates a compute.thermo for temperature calculations). User-specified computes
can be used when more flexibility is needed. Properties calculated by specified computes (automatically, or by the
user) can be logged with analyze.log.


	
class hoomd.compute.thermo(group)

	Compute thermodynamic properties of a group of particles.


	Parameters

	group (hoomd.group) – Group to compute thermodynamic properties for.





hoomd.compute.thermo acts on a given group of particles and calculates thermodynamic properties of those particles when
requested. A default hoomd.compute.thermo is created that operates on the group of all particles. Integration methods
such as hoomd.md.integrate.nvt automatically create an internal hoomd.compute.thermo for the group that they operate on.
If thermodynamic properties are needed on additional groups, a user can specify additional hoomd.compute.thermo commands.

Whether they are automatically created or created by a user, all specified thermos are available for logging via
the hoomd.analyze.log command. Each one provides a set of quantities for logging, suffixed with _groupname, so that
values for different groups are differentiated in the log file. The default hoomd.compute.thermo specified on the group
of all particles has no suffix placed on its quantity names.

The quantities provided are (where groupname is replaced with the name of the group):


	num_particles_groupname - \(N\) number of particles in the group


	ndof_groupname  - \(N_{\mathrm{dof}}\) number of degrees of freedom given to the group by
integrate commands


	translational_ndof_groupname  - \(N_{\mathrm{dof}}\) number of translational degrees of
freedom given to the group by integrate commands


	rotational_ndof_groupname  - \(N_{\mathrm{dof}}\) number of rotational degrees of
freedom given to the group by integrate commands


	potential_energy_groupname - \(U\) potential energy that the group contributes to the entire
system (in energy units)


	kinetic_energy_groupname - \(K\) total kinetic energy of all particles in the group (in energy units)


	translational_kinetic_energy_groupname - \(K\) translational kinetic energy of all particles in the group (in energy units)


	rotational_kinetic_energy_groupname - \(K\) rotational kinetic energy of all particles in the group (in energy units)


	temperature_groupname - \(kT\) instantaneous thermal energy of the group (in energy units). Calculated as


\[kT = 2 \cdot \frac{K}{N_{\mathrm{dof}}}\]



	pressure_groupname - \(P\) instantaneous pressure of the group (in pressure units). Calculated as


\[W = \frac{1}{2} \sum_{i}\sum_{j \ne i} \vec{F}_{ij} \cdot \vec{r_{ij}} + \sum_{k} \vec{F}_{k} \cdot \vec{r_{k}}\]

where \(\vec{F}_{ij}\) are pairwise forces between particles and \(\vec{F}_k\) are forces due to explicit constraints, implicit rigid
body constraints, external walls, and fields. In 2D simulations,
\(P = (K + \frac{1}{2}\cdot W)/A\) where \(A\) is the area of the simulation box.
of the simulation box.



	pressure_xx_groupname, pressure_xy_groupname, pressure_xz_groupname,
pressure_yy_groupname, pressure_yz_groupname, pressure_zz_groupname -
instantaneous pressure tensor of the group (in pressure units).


\[P_{ij} = \left[  \sum_{k\in[0..N)} m_k v_{k,i} v_{k,j} +
                 \sum_{k\in[0..N)} \sum_{l > k} \frac{1}{2} \left(\vec{r}_{kl,i} \vec{F}_{kl,j} + \vec{r}_{kl,j} \vec{F}_{kl, i} \right) \right]/V\]






See also

hoomd.analyze.log.



Examples:

g = group.type(name='typeA', type='A')
compute.thermo(group=g)






	
disable()

	Disables the thermo.

Examples:

my_thermo.disable()





Executing the disable command will remove the thermo compute from the system. Any hoomd.run() command
executed after disabling a thermo compute will not be able to log computed values with hoomd.analyze.log.

A disabled thermo compute can be re-enabled with enable().






	
enable()

	Enables the thermo compute.

Examples:

my_thermo.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations












          

      

      

    

  

    
      
          
            
  
hoomd.context

Overview







	hoomd.context.SimulationContext

	Simulation context



	hoomd.context.initialize

	Initialize the execution context






Details

Manage execution contexts.

Every hoomd simulation needs an execution context that describes what hardware it should execute on,
the MPI configuration for the job, etc…


	
class hoomd.context.SimulationContext

	Simulation context

Store all of the context related to a single simulation, including the system state, forces, updaters, integration
methods, and all other commands specified on this simulation. All such commands in hoomd apply to the currently
active simulation context. You swap between simulation contexts by using this class as a context manager:

sim1 = context.SimulationContext();
sim2 = context.SimulationContext();
with sim1:
  init.read_xml('init1.xml');
  lj = pair.lj(...)
  ...

with sim2:
  init.read_xml('init2.xml');
  gauss = pair.gauss(...)
  ...

# run simulation 1 for a bit
with sim1:
   run(100)

# run simulation 2 for a bit
with sim2:
   run(100)

# set_current sets the current context without needing to use with
sim1.set_current()
run(100)





If you do not need to maintain multiple contexts, you can call context.initialize() to  initialize a new context
and erase the existing one:

context.initialize()
init.read_xml('init1.xml');
lj = pair.lj(...)
...
run(100);

context.initialize()
init.read_xml('init2.xml');
gauss = pair.gauss(...)
...
run(100)






	
sorter

	Global particle sorter.


	Type

	hoomd.update.sort










	
system_definition

	System definition.


	Type

	hoomd.data.system_data









The attributes are global to the context. User scripts may access documented attributes to control settings,
access particle data, etc… See the linked documentation of each attribute for more details. For example,
to disable the global sorter:

c = context.initialize();
c.sorter.disable();






	
on_gpu()

	Test whether this job is running on a GPU.


	Returns

	True if this invocation of HOOMD-blue is executing on a GPU. False if it is on the CPU.










	
set_current()

	Force this to be the current context










	
hoomd.context.initialize(args=None, memory_traceback=False, mpi_comm=None)

	Initialize the execution context


	Parameters

	
	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – Arguments to parse. When None, parse the arguments passed on the command line.


	memory_traceback (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, enable memory allocation tracking (only for debugging/profiling purposes)


	mpi_comm – Accepts an mpi4py communicator. Use this argument to perform many independent hoomd simulations
where you communicate between those simulations using your own mpi4py code.








hoomd.context.initialize() parses the command line arguments given, sets the options and initializes MPI and GPU execution
(if any). By default, hoomd.context.initialize() reads arguments given on the command line. Provide a string to hoomd.context.initialize()
to set the launch configuration within the job script.

hoomd.context.initialize() can be called more than once in a script. However, the execution parameters are fixed on the first call
and args is ignored. Subsequent calls to hoomd.context.initialize() create a new SimulationContext and set it current. This
behavior is primarily to support use of hoomd in jupyter notebooks, so that a new clean simulation context is
set when rerunning the notebook within an existing kernel.

Example:

from hoomd import *
context.initialize();
context.initialize("--mode=gpu --nrank=64");
context.initialize("--mode=cpu --nthreads=64");

world = MPI.COMM_WORLD
comm = world.Split(world.Get_rank(), 0)
hoomd.context.initialize(mpi_comm=comm)












          

      

      

    

  

    
      
          
            
  
hoomd.data

Overview







	hoomd.data.SnapshotParticleData

	Snapshot of particle data properties.



	hoomd.data.angle_data_proxy

	Access a single angle via a proxy.



	hoomd.data.bond_data_proxy

	Access a single bond via a proxy.



	hoomd.data.boxdim

	Define box dimensions.



	hoomd.data.constraint_data_proxy

	Access a single constraint via a proxy.



	hoomd.data.dihedral_data_proxy

	Access a single dihedral via a proxy.



	hoomd.data.force_data_proxy

	Access the force on a single particle via a proxy.



	hoomd.data.gsd_snapshot

	Read a snapshot from a GSD file.



	hoomd.data.particle_data_proxy

	Access a single particle via a proxy.



	hoomd.data.make_snapshot

	Make an empty snapshot.



	hoomd.data.system_data

	Access system data






Details

Access system configuration data.

Code in the data package provides high-level access to all of the particle, bond and other data that define the
current state of the system. You can use python code to directly read and modify this data, allowing you to analyze
simulation results while the simulation runs, or to create custom initial configurations with python code.

There are two ways to access the data.


	Snapshots record the system configuration at one instant in time. You can store this state to analyze the data,
restore it at a future point in time, or to modify it and reload it. Use snapshots for initializing simulations,
or when you need to access or modify the entire simulation state.


	Data proxies directly access the current simulation state. Use data proxies if you need to only touch a few
particles or bonds at a a time.




Snapshots

Relevant methods:


	hoomd.data.system_data.take_snapshot() captures a snapshot of the current system state. A snapshot is a
copy of the simulation state. As the simulation continues to progress, data in a captured snapshot will remain
constant.


	hoomd.data.system_data.restore_snapshot() replaces the current system state with the state stored in
a snapshot.


	hoomd.data.make_snapshot() creates an empty snapshot that you can populate with custom data.


	hoomd.init.read_snapshot() initializes a simulation from a snapshot.




Examples:

snapshot = system.take_snapshot()
system.restore_snapshot(snapshot)
snapshot = data.make_snapshot(N=100, particle_types=['A', 'B'], box=data.boxdim(L=10))
# ... populate snapshot with data ...
init.read_snapshot(snapshot)





Snapshot and MPI

In MPI simulations, the snapshot is only valid on rank 0 by default. make_snapshot, read_snapshot, and take_snapshot,
restore_snapshot are collective calls, and need to be called on all ranks. But only rank 0 can access data
in the snapshot:

snapshot = system.take_snapshot(all=True)
if comm.get_rank() == 0:
    s = init.create_random(N=100, phi_p=0.05);numpy.mean(snapshot.particles.velocity))
    snapshot.particles.position[0] = [1,2,3];

system.restore_snapshot(snapshot);
snapshot = data.make_snapshot(N=10, box=data.boxdim(L=10))
if comm.get_rank() == 0:
    snapshot.particles.position[:] = ....
init.read_snapshot(snapshot)





You can explicitly broadcast the information contained in the snapshot to all other ranks, using broadcast.


snapshot = system.take_snapshot(all=True)
snapshot.broadcast() # broadcast from rank 0 to all other ranks using MPI
snapshot.broadcast_all() # broadcast from partition 0 to all other ranks and partitions using MPI




Simulation box

You can access the simulation box from a snapshot:

>>> print(snapshot.box)
Box: Lx=17.3646569289 Ly=17.3646569289 Lz=17.3646569289 xy=0.0 xz=0.0 yz=0.0 dimensions=3





and can change it:

>>> snapshot.box = data.boxdim(Lx=10, Ly=20, Lz=30, xy=1.0, xz=0.1, yz=2.0)
>>> print(snapshot.box)
Box: Lx=10 Ly=20 Lz=30 xy=1.0 xz=0.1 yz=2.0 dimensions=3





All particles must be inside the box before using the snapshot to initialize a simulation or restoring it.
The dimensionality of the system (2D/3D) cannot change after initialization.

Particle properties

Particle properties are present in snapshot.particles. Each property is stored in a numpy array that directly
accesses the memory of the snapshot. References to these arrays will become invalid when the snapshot itself is
garbage collected.


	N is the number of particles in the particle data snapshot:

>>> print(snapshot.particles.N)
64000







	Change the number of particles in the snapshot with resize. Existing particle properties are
preserved after the resize. Any newly created particles will have default values. After resizing,
existing references to the numpy arrays will be invalid, access them again
from snapshot.particles.*:

>>> snapshot.particles.resize(1000);







	The list of all particle types in the simulation can be accessed and modified:

>>> print(snapshot.particles.types)
['A', 'B', 'C']
>>> snapshot.particles.types = ['1', '2', '3', '4'];







	Individual particles properties are stored in numpy arrays. Vector quantities are stored in Nx3 arrays of floats
(or doubles) and scalar quantities are stored in N length 1D arrays:

>>> print(snapshot.particles.position[10])
[ 1.2398  -10.2687  100.6324]







	Various properties can be accessed of any particle, and the numpy arrays can be sliced or passed whole to other
routines:

>>> print(snapshot.particles.typeid[10])
2
>>> print(snapshot.particles.velocity[10])
(-0.60267972946166992, 2.6205904483795166, -1.7868227958679199)
>>> print(snapshot.particles.mass[10])
1.0
>>> print(snapshot.particles.diameter[10])
1.0







	Particle properties can be set in the same way. This modifies the data in the snapshot, not the
current simulation state:

>>> snapshot.particles.position[10] = [1,2,3]
>>> print(snapshot.particles.position[10])
[ 1.  2.  3.]







	Snapshots store particle types as integers that index into the type name array:

>>> print(snapshot.particles.typeid)
[ 0.  1.  2.  0.  1.  2.  0.  1.  2.  0.]
>>> snapshot.particles.types = ['A', 'B', 'C'];
>>> snapshot.particles.typeid[0] = 2;   # C
>>> snapshot.particles.typeid[1] = 0;   # A
>>> snapshot.particles.typeid[2] = 1;   # B









For a list of all particle properties in the snapshot see hoomd.data.SnapshotParticleData.

Bonds

Bonds are stored in snapshot.bonds. hoomd.data.system_data.take_snapshot() does not record the bonds
by default, you need to request them with the argument bonds=True.


	N is the number of bonds in the bond data snapshot:

>>> print(snapshot.bonds.N)
100







	Change the number of bonds in the snapshot with resize. Existing bonds are
preserved after the resize. Any newly created bonds will be initialized to 0. After resizing,
existing references to the numpy arrays will be invalid, access them again
from snapshot.bonds.*:

>>> snapshot.bonds.resize(1000);







	Bonds are stored in an Nx2 numpy array group. The first axis accesses the bond i. The second axis j goes over
the individual particles in the bond. The value of each element is the tag of the particle participating in the
bond:

>>> print(snapshot.bonds.group)
[[0 1]
[1 2]
[3 4]
[4 5]]
>>> snapshot.bonds.group[0] = [10,11]







	Snapshots store bond types as integers that index into the type name array:

>>> print(snapshot.bonds.typeid)
[ 0.  1.  2.  0.  1.  2.  0.  1.  2.  0.]
>>> snapshot.bonds.types = ['A', 'B', 'C'];
>>> snapshot.bonds.typeid[0] = 2;   # C
>>> snapshot.bonds.typeid[1] = 0;   # A
>>> snapshot.bonds.typeid[2] = 1;   # B









Angles, dihedrals and impropers

Angles, dihedrals, and impropers are stored similar to bonds. The only difference is that the group array is sized
appropriately to store the number needed for each type of bond.


	snapshot.angles.group is Nx3


	snapshot.dihedrals.group is Nx4


	snapshot.impropers.group is Nx4




Special pairs

Special pairs are exactly handled like bonds. The snapshot entry is called pairs.

Constraints

Pairwise distance constraints are added and removed like bonds. They are defined between two particles.
The only difference is that instead of a type, constraints take a distance as parameter.


	N is the number of constraints in the constraint data snapshot:

>>> print(snapshot.constraints.N)
99







	Change the number of constraints in the snapshot with resize. Existing constraints are
preserved after the resize. Any newly created constraints will be initialized to 0. After resizing,
existing references to the numpy arrays will be invalid, access them again
from snapshot.constraints.*:

>>> snapshot.constraints.resize(1000);







	Bonds are stored in an Nx2 numpy array group. The first axis accesses the constraint i. The second axis j goes over
the individual particles in the constraint. The value of each element is the tag of the particle participating in the
constraint:

>>> print(snapshot.constraints.group)
[[4 5]
[6 7]
[6 8]
[7 8]]
>>> snapshot.constraints.group[0] = [10,11]







	Snapshots store constraint distances as floats:

>>> print(snapshot.constraints.value)
[ 1.5 2.3 1.0 0.1 ]









data_proxy Proxy access

For most of the cases below, it is assumed that the result of the initialization command was saved at the beginning
of the script:

system = init.read_xml(filename="input.xml")






Warning

The performance of the proxy access is very slow. Use snapshots to access the whole system configuration
efficiently.



Simulation box

You can access the simulation box:

>>> print(system.box)
Box: Lx=17.3646569289 Ly=17.3646569289 Lz=17.3646569289 xy=0.0 xz=0.0 yz=0.0





and can change it:

>>> system.box = data.boxdim(Lx=10, Ly=20, Lz=30, xy=1.0, xz=0.1, yz=2.0)
>>> print(system.box)
Box: Lx=10 Ly=20 Lz=30 xy=1.0 xz=0.1 yz=2.0





All particles must always remain inside the box. If a box is set in this way such that a particle ends up outside of the box, expect
errors to be thrown or for hoomd to just crash. The dimensionality of the system cannot change after initialization.

Particle properties

For a list of all particle properties that can be read and/or set, see hoomd.data.particle_data_proxy.
The examples here only demonstrate changing a few of them.

system.particles is a window into all of the particles in the system.
It behaves like standard python list in many ways.


	Its length (the number of particles in the system) can be queried:

>>> len(system.particles)
64000







	A short summary can be printed of the list:

>>> print(system.particles)
Particle Data for 64000 particles of 1 type(s)







	The list of all particle types in the simulation can be accessed:

>>> print(system.particles.types)
['A']
>>> print system.particles.types
Particle types: ['A']







	Particle types can be added between hoomd.run() commands:

>>> system.particles.types.add('newType')







	Individual particles can be accessed at random:

>>> i = 4
>>> p = system.particles[i]







	Various properties can be accessed of any particle (note that p can be replaced with system.particles[i]
and the results are the same):

>>> p.tag
4
>>> p.position
(27.296911239624023, -3.5986068248748779, 10.364067077636719)
>>> p.velocity
(-0.60267972946166992, 2.6205904483795166, -1.7868227958679199)
>>> p.mass
1.0
>>> p.diameter
1.0
>>> p.type
'A'
>>> p.tag
4







	Particle properties can be set in the same way:

>>> p.position = (1,2,3)
>>> p.position
(1.0, 2.0, 3.0)







	Finally, all particles can be easily looped over:

for p in system.particles:
    p.velocity = (0,0,0)









Particles may be added at any time in the job script, and a unique tag is returned:

>>> system.particles.add('A')
>>> t = system.particles.add('B')





Particles may be deleted by index:

>>> del system.particles[0]
>>> print(system.particles[0])
tag         : 1
position    : (23.846603393554688, -27.558368682861328, -20.501256942749023)
image       : (0, 0, 0)
velocity    : (0.0, 0.0, 0.0)
acceleration: (0.0, 0.0, 0.0)
charge      : 0.0
mass        : 1.0
diameter    : 1.0
type        : A
typeid      : 0
body        : 4294967295
orientation : (1.0, 0.0, 0.0, 0.0)
net_force   : (0.0, 0.0, 0.0)
net_energy  : 0.0
net_torque  : (0.0, 0.0, 0.0)






Note

The particle with tag 1 is now at index 0. No guarantee is made about how the
order of particles by index will or will not change, so do not write any job scripts which assume
a given ordering.



To access particles in an index-independent manner, use their tags. For example, to remove all particles
of type ‘A’, do:

tags = []
for p in system.particles:
    if p.type == 'A'
        tags.append(p.tag)





Then remove each of the particles by their unique tag:

for t in tags:
    system.particles.remove(t)





Particles can also be accessed through their unique tag:

t = system.particles.add('A')
p = system.particles.get(t)





Any defined group can be used in exactly the same way as system.particles above, only the particles accessed
will be those just belonging to the group. For a specific example, the following will set the velocity of all
particles of type A to 0:

groupA = group.type(name="a-particles", type='A')
for p in groupA:
    p.velocity = (0,0,0)





Bond Data

Bonds may be added at any time in the job script:

>>> system.bonds.add("bondA", 0, 1)
>>> system.bonds.add("bondA", 1, 2)
>>> system.bonds.add("bondA", 2, 3)
>>> system.bonds.add("bondA", 3, 4)





Individual bonds may be accessed by index:

>>> bnd = system.bonds[0]
>>> print(bnd)
tag          : 0
typeid       : 0
a            : 0
b            : 1
type         : bondA
>>> print(bnd.type)
bondA
>>> print(bnd.a)
0
>>> print(bnd.b)
1






Warning

The order in which bonds appear by index is not static and may change at any time!



Bonds may be deleted by index:

>>> del system.bonds[0]
>>> print(system.bonds[0])
tag          : 3
typeid       : 0
a            : 3
b            : 4
type         : bondA





To access bonds in an index-independent manner, use their tags. For example, to delete all bonds which connect to
particle 2, first loop through the bonds and build a list of bond tags that match the criteria:

tags = []
for b in system.bonds:
    if b.a == 2 or b.b == 2:
        tags.append(b.tag)





Then remove each of the bonds by their unique tag:

for t in tags:
    system.bonds.remove(t)





Bonds can also be accessed through their unique tag:

t = system.bonds.add('polymer',0,1)
p = system.bonds.get(t)





Angle, Dihedral, and Improper Data

Angles, Dihedrals, and Impropers may be added at any time in the job script:

>>> system.angles.add("angleA", 0, 1, 2)
>>> system.dihedrals.add("dihedralA", 1, 2, 3, 4)
>>> system.impropers.add("dihedralA", 2, 3, 4, 5)





Individual angles, dihedrals, and impropers may be accessed, deleted by index or removed by tag with the same syntax
as described for bonds, just replace bonds with angles, dihedrals, or, impropers and access the
appropriate number of tag elements (a,b,c for angles) (a,b,c,d for dihedrals/impropers).

Constraints

Constraints may be added and removed from within the job script.

To add a constraint of length 1.5 between particles 0 and 1:

>>> t = system.constraints.add(0, 1, 1.5)





To remove it again:

>>> system.constraints.remove(t)





Forces

Forces can be accessed in a similar way:

>>> lj = pair.lj(r_cut=3.0)
>>> lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
>>> print(lj.forces[0])
tag         : 0
force       : (-0.077489577233791351, -0.029512746259570122, -0.13215918838977814)
virial      : -0.0931386947632
energy      : -0.0469368174672
>>> f0 = lj.forces[0]
>>> print(f0.force)
(-0.077489577233791351, -0.029512746259570122, -0.13215918838977814)
>>> print(f0.virial)
-0.093138694763n
>>> print(f0.energy)
-0.0469368174672





In this manner, forces due to the lj pair force, bonds, and any other force commands in hoomd can be accessed
independently from one another. See hoomd.data.force_data_proxy for a definition of each data field.

For advanced code using the particle data access from python, it is important to understand that the hoomd
particles, forces, bonds, et cetera, are accessed as proxies. This means that after:

p = system.particles[i]





is executed, p does not store the position, velocity, … of particle i. Instead, it stores i and
provides an interface to get/set the properties on demand. This has some side effects you need to be aware of.


	First, it means that p (or any other proxy reference) always references the current state of the particle.
As an example, note how the position of particle p moves after the run() command:

>>> p.position
(-21.317455291748047, -23.883811950683594, -22.159387588500977)
>>> run(1000)
** starting run **
** run complete **
>>> p.position
(-19.774742126464844, -23.564577102661133, -21.418502807617188)







	Second, it means that copies of the proxy reference cannot be changed independently:

p.position
>>> a = p
>>> a.position
(-19.774742126464844, -23.564577102661133, -21.418502807617188)
>>> p.position = (0,0,0)
>>> a.position
(0.0, 0.0, 0.0)










	
class hoomd.data.SnapshotParticleData

	Snapshot of particle data properties.

Users should not create SnapshotParticleData directly. Use hoomd.data.make_snapshot()
or hoomd.data.system_data.take_snapshot() to make snapshots.


	
N

	Number of particles in the snapshot


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
types

	List of string type names (assignable)


	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
position

	(Nx3) numpy array containing the position of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
orientation

	(Nx4) numpy array containing the orientation quaternion of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
velocity

	(Nx3) numpy array containing the velocity of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
acceleration

	(Nx3) numpy array containing the acceleration of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
typeid

	Length N numpy array containing the type id of each particle (32-bit unsigned int)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
mass

	Length N numpy array containing the mass of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
charge

	Length N numpy array containing the charge of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
diameter

	Length N numpy array containing the diameter of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
image

	(Nx3) numpy array containing the image of each particle (32-bit int)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
body

	Length N numpy array containing the body of each particle (32-bit unsigned int). -1 indicates a free particle, and larger negative numbers indicate floppy bodies.


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
moment_inertia

	(Nx3) numpy array containing the principal moments of inertia of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
angmom

	(Nx4) numpy array containing the angular momentum quaternion of each particle (float or double)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










See also

hoomd.data




	
resize(N)

	Resize the snapshot to hold N particles.


	Parameters

	N (int [https://docs.python.org/3/library/functions.html#int]) – new size of the snapshot.





resize() changes the size of the arrays in the snapshot to hold N particles. Existing particle
properties are preserved after the resize. Any newly created particles will have default values. After resizing,
existing references to the numpy arrays will be invalid, access them again
from snapshot.particles.*










	
class hoomd.data.angle_data_proxy(adata, tag)

	Access a single angle via a proxy.

angle_data_proxy provides access to all of the properties of a single angle in the system.
See hoomd.data for examples.


	
tag

	A unique integer attached to each angle (not in any particular range). A angle’s tag remains fixed
during its lifetime. (Tags previously used by removed angles may be recycled).


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
typeid

	Type id of the angle.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
a

	The tag of the first particle in the angle.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
b

	The tag of the second particle in the angle.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
c

	The tag of the third particle in the angle.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
type

	angle type name.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]









In the current version of the API, only already defined type names can be used. A future improvement will allow
dynamic creation of new type names from within the python API.






	
class hoomd.data.bond_data_proxy(bdata, tag)

	Access a single bond via a proxy.

bond_data_proxy provides access to all of the properties of a single bond in the system.
See hoomd.data for examples.


	
tag

	A unique integer attached to each bond (not in any particular range). A bond’s tag remains fixed
during its lifetime. (Tags previously used by removed bonds may be recycled).


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
typeid

	Type id of the bond.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
a

	The tag of the first particle in the bond.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
b

	The tag of the second particle in the bond.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
type

	Bond type name.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]









In the current version of the API, only already defined type names can be used. A future improvement will allow
dynamic creation of new type names from within the python API.






	
class hoomd.data.boxdim(Lx=1.0, Ly=1.0, Lz=1.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3, L=None, volume=None)

	Define box dimensions.


	Parameters

	
	Lx (float [https://docs.python.org/3/library/functions.html#float]) – box extent in the x direction (distance units)


	Ly (float [https://docs.python.org/3/library/functions.html#float]) – box extent in the y direction (distance units)


	Lz (float [https://docs.python.org/3/library/functions.html#float]) – box extent in the z direction (distance units)


	xy (float [https://docs.python.org/3/library/functions.html#float]) – tilt factor xy (dimensionless)


	xz (float [https://docs.python.org/3/library/functions.html#float]) – tilt factor xz (dimensionless)


	yz (float [https://docs.python.org/3/library/functions.html#float]) – tilt factor yz (dimensionless)


	dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions in the box (2 or 3).


	L (float [https://docs.python.org/3/library/functions.html#float]) – shorthand for specifying Lx=Ly=Lz=L (distance units)


	volume (float [https://docs.python.org/3/library/functions.html#float]) – Scale the given box dimensions up to the this volume (area if dimensions=2)








Simulation boxes in hoomd are specified by six parameters, Lx, Ly, Lz, xy, xz and yz. For full details,
see Periodic boundary conditions. A boxdim provides a way to specify all six parameters for a given box and perform some common
operations with them. Modifying a boxdim does not modify the underlying simulation box in hoomd. A boxdim can be passed
to an initialization method or to assigned to a saved sysdef variable (system.box = new_box) to set the simulation
box.

Access attributes directly:

b = data.boxdim(L=20)
b.xy = 1.0
b.yz = 0.5
b.Lz = 40





Two dimensional systems

2D simulations in hoomd are embedded in 3D boxes with short heights in the z direction. To create a 2D box,
set dimensions=2 when creating the boxdim. This will force Lz=1 and xz=yz=0. init commands that support 2D boxes
will pass the dimensionality along to the system. When you assign a new boxdim to an already initialized system,
the dimensionality flag is ignored. Changing the number of dimensions during a simulation run is not supported.

In 2D boxes, volume is in units of area.

Shorthand notation

data.boxdim accepts the keyword argument L=x as shorthand notation for Lx=x, Ly=x, Lz=x in 3D
and Lx=x, Ly=x, Lz=1 in 2D. If you specify both L and Lx, Ly, or Lz, then the value for L will override
the others.

Examples:


	Cubic box with given volume: data.boxdim(volume=V)


	Triclinic box in 2D with given area: data.boxdim(xy=1.0, dimensions=2, volume=A)


	Rectangular box in 2D with given area and aspect ratio: data.boxdim(Lx=1, Ly=aspect, dimensions=2, volume=A)


	Cubic box with given length: data.boxdim(L=10)


	Fully define all box parameters: data.boxdim(Lx=10, Ly=20, Lz=30, xy=1.0, xz=0.5, yz=0.1)





	
get_lattice_vector(i)

	Get a lattice vector.


	Parameters

	i (int [https://docs.python.org/3/library/functions.html#int]) – (=0,1,2) direction of lattice vector



	Returns

	The lattice vector (3-tuple) along direction i.










	
get_volume()

	Get the box volume.


	Returns

	The box volume (area in 2D).










	
make_fraction(v)

	Scale a vector to fractional coordinates.


	Parameters

	v (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The vector to convert to fractional coordinates





make_fraction() takes a vector in a box and computes a vector where all components are
between 0 and 1.


	Returns

	The scaled vector.










	
min_image(v)

	Apply the minimum image convention to a vector using periodic boundary conditions.


	Parameters

	v (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The vector to apply minimum image to



	Returns

	The minimum image as a tuple.










	
scale(sx=1.0, sy=1.0, sz=1.0, s=None)

	Scale box dimensions.


	Parameters

	
	sx (float [https://docs.python.org/3/library/functions.html#float]) – scale factor in the x direction


	sy (float [https://docs.python.org/3/library/functions.html#float]) – scale factor in the y direction


	sz (float [https://docs.python.org/3/library/functions.html#float]) – scale factor in the z direction


	s (float [https://docs.python.org/3/library/functions.html#float]) – Shorthand for sx=s, sy=x, sz=s








Scales the box by the given scale factors. Tilt factors are not modified.


	Returns

	A reference to the modified box.










	
set_volume(volume)

	Set the box volume.


	Parameters

	volume (float [https://docs.python.org/3/library/functions.html#float]) – new box volume (area if dimensions=2)





Scale the box to the given volume (or area).


	Returns

	A reference to the modified box.










	
wrap(v, img=(0, 0, 0))

	Wrap a vector using the periodic boundary conditions.


	Parameters

	
	v (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The vector to wrap


	img (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A vector of integer image flags that will be updated (optional)






	Returns

	The wrapped vector and the image flags in a tuple.














	
class hoomd.data.constraint_data_proxy(cdata, tag)

	Access a single constraint via a proxy.

constraint_data_proxy provides access to all of the properties of a single constraint in the system.
See hoomd.data for examples.


	
tag

	A unique integer attached to each constraint (not in any particular range). A constraint’s tag remains fixed
during its lifetime. (Tags previously used by removed constraints may be recycled).


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
d

	The constraint distance.


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
a

	The tag of the first particle in the constraint.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
b

	The tag of the second particle in the constraint.


	Type

	int [https://docs.python.org/3/library/functions.html#int]














	
class hoomd.data.dihedral_data_proxy(ddata, tag)

	Access a single dihedral via a proxy.

dihedral_data_proxy provides access to all of the properties of a single dihedral in the system.
See hoomd.data for examples.


	
tag

	A unique integer attached to each dihedral (not in any particular range). A dihedral’s tag remains fixed
during its lifetime. (Tags previously used by removed dihedrals may be recycled).


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
typeid

	Type id of the dihedral.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
a

	The tag of the first particle in the dihedral.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
b

	The tag of the second particle in the dihedral.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
c

	The tag of the third particle in the dihedral.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
d

	The tag of the fourth particle in the dihedral.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
type

	dihedral type name.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]









In the current version of the API, only already defined type names can be used. A future improvement will allow
dynamic creation of new type names from within the python API.






	
class hoomd.data.force_data_proxy(force, tag)

	Access the force on a single particle via a proxy.

force_data_proxy provides access to the current force, virial, and energy of a single particle due to a single
force computation. See hoomd.data for examples.


	
force

	(float, x, y, z) - the current force on the particle (force units)


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
virial

	This particle’s contribution to the total virial tensor.


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
energy

	This particle’s contribution to the total potential energy (energy units)


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
torque

	(float x, y, z) - current torque on the particle (torque units)


	Type

	float [https://docs.python.org/3/library/functions.html#float]














	
hoomd.data.gsd_snapshot(filename, frame=0)

	Read a snapshot from a GSD file.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – GSD file to read the snapshot from.


	frame (int [https://docs.python.org/3/library/functions.html#int]) – Frame to read from the GSD file. Negative values index from the end of the file.








hoomd.data.gsd_snapshot() opens the given GSD file and reads a snapshot from it.






	
hoomd.data.make_snapshot(N, box, particle_types=['A'], bond_types=[], angle_types=[], dihedral_types=[], improper_types=[], pair_types=[], dtype='float')

	Make an empty snapshot.


	Parameters

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of particles to create.


	box (hoomd.data.boxdim) – Simulation box parameters.


	particle_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Particle type names (must not be zero length).


	bond_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Bond type names (may be zero length).


	angle_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Angle type names (may be zero length).


	dihedral_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Dihedral type names (may be zero length).


	improper_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Improper type names (may be zero length).


	pair_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – Special pair type names (may be zero length).
.. versionadded:: 2.1


	dtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Data type for the real valued numpy arrays in the snapshot. Must be either ‘float’ or ‘double’.








Examples:

snapshot = data.make_snapshot(N=1000, box=data.boxdim(L=10))
snapshot = data.make_snapshot(N=64000, box=data.boxdim(L=1, dimensions=2, volume=1000), particle_types=['A', 'B'])
snapshot = data.make_snapshot(N=64000, box=data.boxdim(L=20), bond_types=['polymer'], dihedral_types=['dihedralA', 'dihedralB'], improper_types=['improperA', 'improperB', 'improperC'])
... set properties in snapshot ...
init.read_snapshot(snapshot);





hoomd.data.make_snapshot() creates all particles with default properties. You must set reasonable
values for particle properties before initializing the system with hoomd.init.read_snapshot().

The default properties are:


	position 0,0,0


	velocity 0,0,0


	image 0,0,0


	orientation 1,0,0,0


	typeid 0


	charge 0


	mass 1.0


	diameter 1.0





See also

hoomd.init.read_snapshot()








	
class hoomd.data.particle_data_proxy(pdata, tag)

	Access a single particle via a proxy.

particle_data_proxy provides access to all of the properties of a single particle in the system.
See hoomd.data for examples.


	
tag

	A unique name for the particle in the system. Tags run from 0 to N-1.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
acceleration

	A 3-tuple of floats (x, y, z). Acceleration is a calculated quantity and cannot be set. (in acceleration units)


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
typeid

	The type id of the particle.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
position

	(x, y, z) (float, in distance units).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
image

	(x, y, z) (int).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
velocity

	(x, y, z) (float, in velocity units).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
charge

	Particle charge.


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
mass

	(in mass units).


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
diameter

	(in distance units).


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
type

	Particle type name.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
body

	Body id. -1 for free particles, 0 or larger for rigid bodies, and -2 or lesser for floppy bodies.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
orientation

	(w,x,y,z) (float, quaternion).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
net_force

	Net force on particle (x, y, z) (float, in force units).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
net_energy

	Net contribution of particle to the potential energy (in energy units).


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
net_torque

	Net torque on the particle (x, y, z) (float, in torque units).


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
net_virial

	Net virial for the particle (xx,yy,zz, xy, xz, yz)


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]














	
class hoomd.data.system_data(sysdef)

	Access system data

system_data provides access to the different data structures that define the current state of the simulation.
See hoomd.data for a full explanation of how to use by example.


	
box

	
	Type

	hoomd.data.boxdim










	
particles

	
	Type

	hoomd.data.particle_data_proxy










	
bonds

	
	Type

	hoomd.data.bond_data_proxy










	
angles

	
	Type

	hoomd.data.angle_data_proxy










	
dihedrals

	
	Type

	hoomd.data.dihedral_data_proxy










	
impropers

	
	Type

	hoomd.data.dihedral_data_proxy










	
constraint

	
	Type

	hoomd.data.constraint_data_proxy










	
pairs

	
New in version 2.1.




	Type

	hoomd.data.bond_data_proxy










	
replicate(nx=1, ny=1, nz=1)

	Replicates the system along the three spatial dimensions.


	Parameters

	
	nx (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate the system along the x-direction


	ny (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate the system along the y-direction


	nz (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate the system along the z-direction








This method replicates particles along all three spatial directions, as
opposed to replication implied by periodic boundary conditions.
The box is resized and the number of particles is updated so that the new box
holds the specified number of replicas of the old box along all directions.
Particle coordinates are updated accordingly to fit into the new box. All velocities and
other particle properties are replicated as well. Also bonded groups between particles
are replicated.

Examples:

system = init.read_xml("some_file.xml")
system.replicate(nx=2,ny=2,nz=2)






Note

The dimensions of the processor grid are not updated upon replication. For example, if an initially
cubic box is replicated along only one spatial direction, this could lead to decreased performance
if the processor grid was optimal for the original box dimensions, but not for the new ones.








	
restore_snapshot(snapshot)

	Re-initializes the system from a snapshot.


	Parameters

	snapshot – . The snapshot to initialize the system from.





Snapshots temporarily store system data. Snapshots contain the complete simulation state in a
single object. They can be used to restart a simulation.

Example use cases in which a simulation may be restarted from a snapshot include python-script-level
Monte-Carlo schemes, where the system state is stored after a move has been accepted (according to
some criterion), and where the system is re-initialized from that same state in the case
when a move is not accepted.

Example:

system = init.read_xml("some_file.xml")

... run a simulation ...

snapshot = system.take_snapshot(all=True)
...
system.restore_snapshot(snapshot)






Warning

restore_snapshot() may invalidate force coefficients, neighborlist r_cut values, and other per type
quantities if called within a callback during a run(). You can restore a snapshot during a run only
if the snapshot is of a previous state of the currently running system. Otherwise, you need to use
restore_snapshot() between run() commands to ensure that all per type coefficients are updated properly.








	
take_snapshot(particles=True, bonds=False, pairs=False, integrators=False, all=False, dtype='float')

	Take a snapshot of the current system data.


	Parameters

	
	particles (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, particle data is included in the snapshot.


	bonds (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, bond, angle, dihedral, improper and constraint data is included.


	pairs (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, special pair data is included
.. versionadded:: 2.1


	integrators (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, integrator data is included the snapshot.


	all (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, the entire system state is saved in the snapshot.


	dtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Datatype for the snapshot numpy arrays. Must be either ‘float’ or ‘double’.






	Returns

	The snapshot object.





This functions returns a snapshot object. It contains the current.
partial or complete simulation state. With appropriate options
it is possible to select which data properties should be included
in the snapshot

Examples:

snapshot = system.take_snapshot()
snapshot = system.take_snapshot()
snapshot = system.take_snapshot(bonds=true)
















          

      

      

    

  

    
      
          
            
  
hoomd.dump

Overview







	hoomd.dump.dcd

	Writes simulation snapshots in the DCD format



	hoomd.dump.getar

	Analyzer for dumping system properties to a getar file at intervals.



	hoomd.dump.gsd

	Writes simulation snapshots in the GSD format






Details

Write system configurations to files.

Commands in the dump package write the system state out to a file every
period time steps. Check the documentation for details on which file format
each command writes.


	
class hoomd.dump.dcd(filename, period, group=None, overwrite=False, unwrap_full=False, unwrap_rigid=False, angle_z=False, phase=0)

	Writes simulation snapshots in the DCD format


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name to write.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps between file dumps.


	group (hoomd.group) – Particle group to output to the dcd file. If left as None, all particles will be written.


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – When False, (the default) an existing DCD file will be appended to. When True, an existing DCD
file filename will be overwritten.


	unwrap_full (bool [https://docs.python.org/3/library/functions.html#bool]) – When False, (the default) particle coordinates are always written inside the simulation box.
When True, particles will be unwrapped into their current box image before writing to the dcd file.


	unwrap_rigid (bool [https://docs.python.org/3/library/functions.html#bool]) – When False, (the default) individual particles are written inside the simulation box which
breaks up rigid bodies near box boundaries. When True, particles belonging to the same rigid body will be
unwrapped so that the body is continuous. The center of mass of the body remains in the simulation box, but
some particles may be written just outside it. unwrap_rigid is ignored when unwrap_full is True.


	angle_z (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the particle orientation angle is written to the z component (only useful for 2D simulations)


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








Every period time steps a new simulation snapshot is written to the
specified file in the DCD file format. DCD only stores particle positions, in distance
units - see Units.

Due to constraints of the DCD file format, once you stop writing to
a file via disable(), you cannot continue writing to the same file,
nor can you change the period of the dump at any time. Either of these tasks
can be performed by creating a new dump file with the needed settings.

Examples:

dump.dcd(filename="trajectory.dcd", period=1000)
dcd = dump.dcd(filename"data/dump.dcd", period=1000)






Warning

When you use dump.dcd to append to an existing dcd file:


	The period must be the same or the time data in the file will not be consistent.


	dump.dcd will not write out data at time steps that already are present in the dcd file to maintain a
consistent timeline







	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	The DCD dump writer cannot be re-enabled






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.










	
class hoomd.dump.getar(filename, mode='w', static=[], dynamic={}, _register=True)

	Analyzer for dumping system properties to a getar file at intervals.

Getar files are a simple interface on top of archive formats (such
as zip and tar) for storing trajectory data efficiently. A more
thorough description of the format and a description of a python
API to read and write these files is available at the libgetar
documentation [http://libgetar.readthedocs.io].

Properties to dump can be given either as a
getar.DumpProp object or a name. Supported property
names are specified in the Supported Property Table in
hoomd.init.read_getar.

Files can be opened in write, append, or one-shot mode. Write mode
overwrites files with the same name, while append mode adds to
them. One-shot mode is intended for restorable system backups and
is described below.

One-shot mode

In one-shot mode, activated by passing mode=’1’ to the getar
constructor, properties are written to a temporary file, which
then overwrites the file with the given filename. In this way, the
file with the given filename should always have the most recent
frame of successfully written data. This mode is designed for
being able to dump restoration data often without wasting large
amounts of space saving earlier data. Note that this
create-and-overwrite process can be stressful on filesystems,
particularly lustre filesystems, and can get your account blocked
on some supercomputer resources if overused.

For convenience, you can also specify composite properties,
which are expanded according to the table below.







	Name

	Result





	global_all

	box, dimensions



	angle_all

	angle_type_names, angle_tag, angle_type



	bond_all

	bond_type_names, bond_tag, bond_type



	dihedral_all

	dihedral_type_names, dihedral_tag, dihedral_type



	improper_all

	improper_type_names, improper_tag, improper_type



	particle_all

	angular_momentum, body, charge, diameter, image, mass, moment_inertia, orientation, position, type, type_names, velocity



	all

	particle_all, angle_all, bond_all, dihedral_all, improper_all, global_all



	viz_static

	type, type_names, dimensions



	viz_dynamic

	position, box



	viz_all

	viz_static, viz_dynamic



	viz_aniso_dynamic

	viz_dynamic, orientation



	viz_aniso_all

	viz_static, viz_aniso_dynamic






Particle-related metadata

Metadata about particle shape (for later visualization or use in
restartable scripts) can be stored in a simple form through
hoomd.dump.getar.writeJSON(), which encodes JSON records
as strings and stores them inside the dump file. Currently,
classes inside hoomd.dem and hoomd.hpmc are
equipped with get_type_shapes() methods which can provide
per-particle-type shape information as a list.

Example:

dump = hoomd.dump.getar.simple('dump.sqlite', 1e3,
    static=['viz_static'],
    dynamic=['viz_aniso_dynamic'])

dem_wca = hoomd.dem.WCA(nlist, radius=0.5)
dem_wca.setParams('A', vertices=vertices, faces=faces)
dump.writeJSON('type_shapes.json', dem_wca.get_type_shapes())

mc = hpmc.integrate.convex_polygon(seed=415236)
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5), (0.5, 0.5), (-0.5, 0.5)])
dump.writeJSON('type_shapes.json', mc.get_type_shapes(), dynamic=True)






	
class DumpProp(name, highPrecision=False, compression=hoomd.dump.getar.Compression.FastCompress)

	Create a dump property specification.


	Parameters

	
	name – Name of the property to dump


	highPrecision – True if the property should be dumped in high precision, if possible


	compression – Compression level to save the property with, if possible













	
__init__(filename, mode='w', static=[], dynamic={}, _register=True)

	Initialize a getar dumper. Creates or appends an archive at the given file
location according to the mode and prepares to dump the given
sets of properties.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to open


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Run mode; see mode list below.


	static (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of static properties to dump immediately


	dynamic (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of {prop: period} periodic dumps


	_register (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, register as a hoomd analyzer (internal)








Note that zip32-format archives can not be appended to at the
moment; for details and solutions, see the libgetar
documentation, section “Zip vs. Zip64.” The gtar.fix module was
explicitly made for this purpose, but be careful not to call it
from within a running GPU HOOMD simulation due to strangeness in
the CUDA driver.

Valid mode arguments:


	‘w’: Write, and overwrite if file exists


	‘a’: Write, and append if file exists


	‘1’: One-shot mode: keep only one frame of data. For details on one-shot mode, see the “One-shot mode” section of getar.




Property specifications can be either a property name (as a string) or
DumpProp objects if you desire greater control over how the
property will be dumped.

Example:

# detailed API; see `dump.getar.simple` for simpler wrappers
zip = dump.getar('dump.zip', static=['types'],
          dynamic={'orientation': 10000,
                   'velocity': 5000,
                   dump.getar.DumpProp('position', highPrecision=True): 10000})










	
close()

	Closes the trajectory if it is open. Finalizes any IO beforehand.






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
classmethod immediate(filename, static, dynamic)

	Immediately dump the given static and dynamic properties to the given filename.

For detailed explanation of arguments, see getar.

Example:

hoomd.dump.getar.immediate(
    'snapshot.tar', static=['viz_static'], dynamic=['viz_dynamic'])










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
classmethod simple(filename, period, mode='w', static=[], dynamic=[], high_precision=False)

	Create a getar dump object with a simpler interface.

Static properties will be dumped once immediately, and dynamic
properties will be dumped every period steps. For detailed
explanation of arguments, see getar.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to open


	period (int [https://docs.python.org/3/library/functions.html#int]) – Period to dump the given dynamic properties with


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Run mode; see mode list in getar.


	static (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of static properties to dump immediately


	dynamic (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of properties to dump every period steps


	high_precision (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, dump precision properties








Example:

# [optionally] dump metadata beforehand with libgetar
with gtar.GTAR('dump.sqlite', 'w') as trajectory:
    metadata = json.dumps(hoomd.meta.dump_metadata())
    trajectory.writeStr('hoomd_metadata.json', metadata)
# for later visualization of anisotropic systems
zip2 = hoomd.dump.getar.simple(
     'dump.sqlite', 100000, 'a', static=['viz_static'], dynamic=['viz_aniso_dynamic'])
# as backup to restore from later
backup = hoomd.dump.getar.simple(
    'backup.tar', 10000, '1', static=['viz_static'], dynamic=['viz_aniso_dynamic'])










	
writeJSON(name, contents, dynamic=True)

	Encodes the given JSON-encodable object as a string and writes it
(immediately) as a quantity with the given name. If dynamic is
True, writes the record as a dynamic record with the current
timestep.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the record to save


	contents (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any datatype encodable by the json [https://docs.python.org/3/library/json.html#module-json] module


	dynamic (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, dump a dynamic quantity with the current timestep; otherwise, dump a static quantity








Example:

dump = hoomd.dump.getar.simple('dump.sqlite', 1e3,
    static=['viz_static'], dynamic=['viz_dynamic'])
dump.writeJSON('params.json', dict(temperature=temperature, pressure=pressure))
dump.writeJSON('metadata.json', hoomd.meta.dump_metadata())














	
class hoomd.dump.gsd(filename, period, group, overwrite=False, truncate=False, phase=0, time_step=None, static=None, dynamic=None)

	Writes simulation snapshots in the GSD format


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name to write


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps between file dumps, or None to write a single file immediately.


	group (hoomd.group) – Particle group to output to the gsd file.


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – When False (the default), any existing GSD file will be appended to. When True, an existing GSD
file filename will be overwritten.


	truncate (bool [https://docs.python.org/3/library/functions.html#bool]) – When False (the default), frames are appended to the GSD file. When True, truncate the file and
write a new frame 0 every time.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.


	time_step (int [https://docs.python.org/3/library/functions.html#int]) – Time step to write to the file (only used when period is None)


	dynamic (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of quantity categories to save every frame. (added in version 2.2)


	static (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of quantity categories save only in frame 0 (may not be set in conjunction with dynamic, deprecated in version 2.2).








Write a simulation snapshot to the specified GSD file at regular intervals. GSD is capable of storing all particle
and bond data fields in hoomd, in every frame of the trajectory. This allows GSD to store simulations where the
number of particles, number of particle types, particle types, diameter, mass, charge, and other quantities change
over time. GSD can also store integrator state information necessary for restarting simulations and user-defined log
quantities.

To save on space, GSD does not write values that are all set at defaults. So if all masses, orientations, angular
momenta, etc… are left default, these fields  will not take up any space in the file. Additionally, only
dynamic quantities are written to all frames, non-dynamic quantities are only written to frame 0. The GSD schema
defines that data not present in frame i is to be read from frame 0. This makes every single frame of a GSD file
fully specified and simulations initialized with hoomd.init.read_gsd() can select any frame of the file.

You can control what quantities are dynamic by category. property is always dynamic. The categories listed in
the dynamic will also be written out to every frame, but only if they have changed from the defaults.


	attribute



	particles/N


	particles/types


	particles/typeid


	particles/mass


	particles/charge


	particles/diameter


	particles/body


	particles/moment_inertia









	property



	particles/position


	particles/orientation (only written when changed from default)









	momentum



	particles/velocity


	particles/angmom (only written when changed from default)


	particles/image









	topology



	bonds/


	angles/


	dihedrals/


	impropers/


	constraints/


	pairs/











See https://github.com/glotzerlab/gsd and http://gsd.readthedocs.io/ for more information on GSD files.

If you only need to store a subset of the system, you can save file size and time spent analyzing data by
specifying a group to write out. gsd will write out all of the particles in the group in ascending
tag order. When the group is not hoomd.group.all(), gsd will not write the topology fields.

To write restart files with gsd, set truncate=True. This will cause gsd to write a new frame 0
to the file every period steps.

State data

gsd can save internal state data for the following hoomd objects:



	HPMC integrators







Call dump_state() with the object as an argument to enable saving its state. State saved in this way
can be restored after initializing the system with hoomd.init.read_gsd().

User-defined log quantities

Associate a name with a callable python object that returns a numpy array in log, and gsd
will save the data you provide on every frame. Prefix per-particle quantities with particles/ and per-bond
quantities with bonds/ so that visualization tools such as OVITO [https://www.ovito.org/] will make them
available in their pipelines. OVITO also understand scalar values (length 1 numpy arrays) and strings encoded
as uint8 numpy arrays.

Examples:

dump.gsd(filename="trajectory.gsd", period=1000, group=group.all(), phase=0)
dump.gsd(filename="restart.gsd", truncate=True, period=10000, group=group.all(), phase=0)
dump.gsd(filename="configuration.gsd", overwrite=True, period=None, group=group.all(), time_step=0)
dump.gsd(filename="momentum_too.gsd", period=1000, group=group.all(), phase=0, dynamic=['momentum'])
dump.gsd(filename="saveall.gsd", overwrite=True, period=1000, group=group.all(), dynamic=['attribute', 'momentum', 'topology'])






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
dump_shape(obj)

	Writes particle shape information stored by a hoomd object.

This method writes particle shape information into a GSD file, in the
chunk particle/type_shapes. This information can be used by
other libraries for visualization. The following classes support
writing shape information to GSD files:


	hoomd.hpmc.integrate.sphere


	hoomd.hpmc.integrate.convex_polyhedron


	hoomd.hpmc.integrate.convex_spheropolyhedron


	hoomd.hpmc.integrate.polyhedron


	hoomd.hpmc.integrate.convex_polygon


	hoomd.hpmc.integrate.convex_spheropolygon


	hoomd.hpmc.integrate.simple_polygon


	hoomd.hpmc.integrate.ellipsoid


	hoomd.dem.pair.WCA


	hoomd.dem.pair.SWCA


	hoomd.md.pair.gb




See the Shape Visualization Specification [https://gsd.readthedocs.io/en/stable/shapes.html]
section of the GSD package documentation for a detailed description of shape definitions.


New in version 2.7.








	
dump_state(obj)

	Write state information for a hoomd object.

Call dump_state() if you want to write the state of a hoomd object
to the gsd file.


New in version 2.2.








	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
log

	Dictionary mapping user-defined names to callbacks.

Add an item to log to save user-defined data in the gsd file. The key provides the name of the data
chunk in the gsd file (e.g. particles/lj_potential_energy). The value is a callable python object that takes
the current time step as an argument and returns a numpy array that has 1 or 2 dimensions and has a data type
supported by gsd [https://gsd.readthedocs.io].

Delete a key from log to stop logging that quantity.


Note

All logged data chunks must be present in the first frame in the gsd file to provide the default value. Some
(or all) chunks may be omitted on later frames:




Note

In MPI parallel simulations, the callback will be called on all ranks. gsd will write the data
returned by the root rank. Return values from all other ranks are ignored (and may be None).




New in version 2.7.








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.






	
write_restart()

	Write a restart file at the current time step.

Call write_restart() at the end of a simulation where are writing a gsd restart file with
truncate=True to ensure that you have the final frame of the simulation written before exiting.
See Restartable jobs for examples.












          

      

      

    

  

    
      
          
            
  
hoomd.group

Overview







	hoomd.group.all

	Groups all particles.



	hoomd.group.charged

	Groups particles that are charged.



	hoomd.group.cuboid

	Groups particles in a cuboid.



	hoomd.group.difference

	Create a new group from the set difference or complement of two existing groups.



	hoomd.group.group

	Defines a group of particles



	hoomd.group.intersection

	Create a new group from the set intersection of two existing groups.



	hoomd.group.nonrigid

	Groups particles that do not belong to rigid bodies.



	hoomd.group.rigid

	Groups particles that belong to rigid bodies.



	hoomd.group.rigid_center

	Groups particles that are center particles of rigid bodies.



	hoomd.group.tag_list

	Groups particles by tag list.



	hoomd.group.tags

	Groups particles by tag.



	hoomd.group.type

	Groups particles by type.



	hoomd.group.union

	Create a new group from the set union of two existing groups.






Details

Commands for grouping particles

This package contains various commands for making groups of particles


	
hoomd.group.all()

	Groups all particles.

Creates a particle group from all particles in the simulation.

Examples:

all = group.all()










	
hoomd.group.body()

	Groups particles that belong to any bodies.

Creates a particle group from particles. All particles that belong to a body will be added to the group.
The group is always named ‘body’.

Examples:

body = group.body()










	
hoomd.group.charged(name='charged')

	Groups particles that are charged.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group.





Creates a particle group containing all particles that have a non-zero charge.


Warning

This group currently does not support being updated when the number of particles changes.



Examples:

a = group.charged()
b = group.charged(name="cp")










	
hoomd.group.cuboid(name, xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None)

	Groups particles in a cuboid.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group


	xmin (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Lower left x-coordinate of the cuboid (in distance units)


	xmax (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Upper right x-coordinate of the cuboid (in distance units)


	ymin (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Lower left y-coordinate of the cuboid (in distance units)


	ymax (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Upper right y-coordinate of the cuboid (in distance units)


	zmin (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Lower left z-coordinate of the cuboid (in distance units)


	zmax (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Upper right z-coordinate of the cuboid (in distance units)








If any of the above parameters is not set, it will automatically be placed slightly outside of the simulation box
dimension, allowing easy specification of slabs.

Creates a particle group from particles that fall in the defined cuboid. Membership tests are performed via
xmin <= x < xmax (and so forth for y and z) so that directly adjacent cuboids do not have overlapping group members.


Note

Membership in cuboid is defined at time of group creation. Once created,
any particles added to the system will not be added to the group. Any particles that move
into the cuboid region will not be added automatically, and any that move out will not be
removed automatically.



Between runs, you can force a group to update its membership with the particles currently
in the originally defined region using hoomd.group.group.force_update().

Examples:

slab = group.cuboid(name="slab", ymin=-3, ymax=3)
cube = group.cuboid(name="cube", xmin=0, xmax=5, ymin=0, ymax=5, zmin=0, zmax=5)
run(100)
# Remove particles that left the region and add particles that entered the region.
cube.force_update()










	
hoomd.group.difference(name, a, b)

	Create a new group from the set difference or complement of two existing groups.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group.


	a (group) – First group.


	b (group) – Second group.








The set difference of a and b is defined to be the set of particles that are in a and not in b.
This can be useful for inverting the sense of a group (see below).

A new group called name is created.


Warning

The group is static and will not update if particles are added to
or removed from the system.



Examples:

groupA = group.type(name='groupA', type='A')
all = group.all()
nottypeA = group.difference(name="particles-not-typeA", a=all, b=groupA)










	
hoomd.group.floppy()

	Groups particles that belong to any floppy body.

Creates a particle group from particles. All particles that belong to a floppy will be added to the group.
The group is always named ‘floppy’.

Examples:

floppy = group.floppy()










	
class hoomd.group.group(name, cpp_group)

	Defines a group of particles

group should not be created directly in user code. The following methods can be used to create particle
groups.


	hoomd.group.all()


	hoomd.group.cuboid()


	hoomd.group.nonrigid()


	hoomd.group.rigid()


	hoomd.group.tags()


	hoomd.group.tag_list()


	hoomd.group.type()


	hoomd.group.charged()




The above functions assign a descriptive name based on the criteria chosen. That name can be easily changed if desired:

groupA = group.type('A')
groupA.name = "my new group name"





Once a group has been created, it can be combined with others via set operations to form more complicated groups.
Available operations are:


	hoomd.group.difference()


	hoomd.group.intersection()


	hoomd.group.union()





Note

Groups need to be consistent with the particle data. If a particle member is removed from the simulation,
it will be temporarily removed from the group as well, that is, even though the group reports that tag as a member,
it will act as if the particle was not existent. If a particle with the same tag is later added to the simulation,
it will become member of the group again.



Examples:

# create a group containing all particles in group A and those with
# tags 100-199
groupA = group.type('A')
group100_199 = group.tags(100, 199);
group_combined = group.union(name="combined", a=groupA, b=group100_199);

# create a group containing all particles in group A that also have
# tags 100-199
group_combined2 = group.intersection(name="combined2", a=groupA, b=group100_199);

# create a group containing all particles that are not in group A
all = group.all()
group_notA = group.difference(name="notA", a=all, b=groupA)





A group can also be queried with python sequence semantics.

Examples:

groupA = group.type('A')
# print the number of particles in group A
print len(groupA)
# print the position of the first particle in the group
print groupA[0].position
# set the velocity of all particles in groupA to 0
for p in groupA:
    p.velocity = (0,0,0)





For more information and examples on accessing the data in this way, see hoomd.data.


	
force_update()

	Force an update of the group.

Re-evaluate all particles against the original group selection criterion and build a new
member list based on the current state of the system. For example, call hoomd.group.group.force_update()
set set a cuboid group’s membership to particles that are currently in the defined region.

Groups made by a combination (union, intersection, difference) of other groups will not
update their membership, they are always static.










	
hoomd.group.intersection(name, a, b)

	Create a new group from the set intersection of two existing groups.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group.


	a (group) – First group.


	b (group) – Second group.








A new group is created that contains all particles of a that are also in b, and is given the name
name.


Warning

The group is static and will not update if particles are added to
or removed from the system.



Examples:

groupA = group.type(name='groupA', type='A')
group100_199 = group.tags(name='100_199', tag_min=100, tag_max=199);
groupC = group.intersection(name="groupC", a=groupA, b=group100_199)










	
hoomd.group.nonbody()

	Groups particles that do not belong to any body.

Creates a particle group from particles. All particles that do not belong to a body will be added to
the group. The group is always named ‘nonbody’.

Examples:

nonbody = group.nonbody()










	
hoomd.group.nonfloppy()

	Groups particles that do not belong to any floppy body.

Creates a particle group from particles. All particles that do not belong to a floppy body will be added to
the group. The group is always named ‘nonfloppy’.

Examples:

nonfloppy = group.nonfloppy()










	
hoomd.group.nonrigid()

	Groups particles that do not belong to rigid bodies.

Creates a particle group from particles. All particles that do not belong to a rigid body will be added to
the group. The group is always named ‘nonrigid’.

Examples:

nonrigid = group.nonrigid()










	
hoomd.group.rigid()

	Groups particles that belong to rigid bodies.

Creates a particle group from particles. All particles that belong to a rigid body will be added to the group.
The group is always named ‘rigid’.

Examples:

rigid = group.rigid()










	
hoomd.group.rigid_center()

	Groups particles that are center particles of rigid bodies.

Creates a particle group from particles. All particles that are central particles of rigid bodies be added to the group.
The group is always named ‘rigid_center’.

Examples:

rigid = group.rigid_center()










	
hoomd.group.tag_list(name, tags)

	Groups particles by tag list.


	Parameters

	
	tags (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle tags to include in the group


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group.








Creates a particle group from particles with the given tags. Can be used to implement advanced grouping not
available with existing group commands.

Examples:

a = group.tag_list(name="a", tags = [0, 12, 18, 205])
b = group.tag_list(name="b", tags = range(20,400))










	
hoomd.group.tags(tag_min, tag_max=None, name=None, update=False)

	Groups particles by tag.


	Parameters

	
	tag_min (int [https://docs.python.org/3/library/functions.html#int]) – First tag in the range to include (inclusive)


	tag_max (int [https://docs.python.org/3/library/functions.html#int]) – Last tag in the range to include (inclusive)


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group. If a name is not specified, a default one will be generated.


	update (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, update list of group members when particles are added to or removed from the simulation.








Creates a particle group from particles that match the given tag range.

The tag_max is optional. If it is not specified, then a single particle with tag=tag_min will be
added to the group.

Examples:

half1 = group.tags(name="first-half", tag_min=0, tag_max=999)
half2 = group.tags(name="second-half", tag_min=1000, tag_max=1999)










	
hoomd.group.type(type, name=None, update=False)

	Groups particles by type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the particle type to add to the group.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group. If a name is not specified, a default one will be generated.


	update (bool [https://docs.python.org/3/library/functions.html#bool]) – When true, update list of group members when particles are added to or removed from the simulation.








Creates a particle group from particles that match the given type. The group can then be used by other hoomd
commands (such as analyze.msd) to specify which particles should be operated on.


Note

Membership in hoomd.group.type() is defined at time of group creation. Once created,
any particles added to the system will be added to the group if update is set to True.
However, if you change a particle type it will not be added to or removed from this group.



Between runs, you can force a group to update its membership with the particles currently
in the originally  specified type using hoomd.group.group.force_update().

Examples:

groupA = group.type(name='a-particles', type='A')
groupB = group.type(name='b-particles', type='B')
groupB = group.type(name='b-particles', type='B',update=True)










	
hoomd.group.union(name, a, b)

	Create a new group from the set union of two existing groups.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-assigned name for this group.


	a (group) – First group.


	b (group) – Second group.








A new group is created that contains all particles present in either group a or b, and is given the
name name.


Warning

The group is static and will not update if particles are added to
or removed from the system.



Examples:

groupA = group.type(name='groupA', type='A')
groupB = group.type(name='groupB', type='B')
groupAB = group.union(name="ab-particles", a=groupA, b=groupB)












          

      

      

    

  

    
      
          
            
  
hoomd.init

Overview







	hoomd.init.create_lattice

	Create a lattice.



	hoomd.init.read_getar

	Initialize a system from a trajectory archive (.tar, .getar, .sqlite) file.



	hoomd.init.read_gsd

	Read initial system state from an GSD file.



	hoomd.init.read_snapshot

	Initializes the system from a snapshot.






Details

Data initialization commands

Commands in the hoomd.init package initialize the particle system.


	
hoomd.init.create_lattice(unitcell, n)

	Create a lattice.


	Parameters

	
	unitcell (hoomd.lattice.unitcell) – The unit cell of the lattice.


	n (list [https://docs.python.org/3/library/stdtypes.html#list]) – Number of replicates in each direction.








create_lattice() take a unit cell and replicates it the requested number of times in each direction.
The resulting simulation box is commensurate with the given unit cell. A generic hoomd.lattice.unitcell
may have arbitrary vectors \(\vec{a}_1\), \(\vec{a}_2\), and \(\vec{a}_3\). create_lattice()
will rotate the unit cell so that \(\vec{a}_1\) points in the \(x\) direction and \(\vec{a}_2\)
is in the \(xy\) plane so that the lattice may be represented as a HOOMD simulation box.

When n is a single value, the lattice is replicated n times in each direction. When n is a list, the
lattice is replicated n[0] times in the \(\vec{a}_1\) direction, n[1] times in the \(\vec{a}_2\)
direction and n[2] times in the \(\vec{a}_3\) direction.

Examples:

hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=1.0),
                          n=[2,4,2]);

hoomd.init.create_lattice(unitcell=hoomd.lattice.bcc(a=1.0),
                          n=10);

hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=1.2),
                          n=[100,10]);

hoomd.init.create_lattice(unitcell=hoomd.lattice.hex(a=1.0),
                          n=[100,58]);










	
hoomd.init.read_getar(filename, modes={'any': 'any'})

	Initialize a system from a trajectory archive (.tar, .getar,
.sqlite) file. Returns a HOOMD system_data object.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read from


	modes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of {property: frame} values; see below








Getar files are a simple interface on top of archive formats (such
as zip and tar) for storing trajectory data efficiently. A more
thorough description of the format and a description of a python
API to read and write these files is available at the libgetar
documentation [http://libgetar.readthedocs.io].

The modes argument is a dictionary. The keys of this
dictionary should be either property names (see the Supported
Property Table below) or tuples of property names.

If the key is a tuple of property names, data for those names will
be restored from the same frame. Other acceptable keys are “any” to
restore any properties which are present from the file, “angle_any”
to restore any angle-related properties present, “bond_any”, and so
forth. The values associated with each key in the dictionary should
be “any” (in which case any frame present for the data will be
restored, even if the frames are different for two property names in
a tuple), “latest” (grab the most recent frame data), “earliest”, or
a specific timestep value.

Example:

# creating file to initialize beforehand using libgetar
with gtar.GTAR('init.zip', 'w') as traj:
    traj.writePath('position.f32.ind', positions)
    traj.writePath('velocity.f32.ind', velocities)
    traj.writePath('metadata.json', json.dumps(metadata))
system = hoomd.init.read_getar('init.zip')
# using the backup created in the `hoomd.dump.getar.simple` example
system = hoomd.init.read_getar('backup.tar')





Supported Property Table









	Name

	Type

	Shape

	Notes





	angle_type_names

	JSON [String]

	(N_angle_types,)

	list containing the name of each angle type in JSON format



	angle_tag

	unsigned int

	(N_angle, 3)

	array of particle tags for each angle interaction



	angle_type

	unsigned int

	(N_angle,)

	array of angle interaction types



	angular_momentum

	float

	(N, 4)

	per-particle angular momentum quaternion



	body

	int

	(N,)

	particle rigid body index



	bond_type_names

	JSON [String]

	(N_bond_types,)

	list containing the name of each bond type in JSON format



	bond_tag

	unsigned int

	(N_bond, 2)

	array of particle tags for each bond interaction



	bond_type

	unsigned int

	(N_bond,)

	array of bond interaction types



	box

	float

	(6,)

	vector of box lengths (x, y, z, tilt_xy, tilt_xz, tilt_yz); can be high precision



	charge

	float

	(N,)

	particle charge



	diameter

	float

	(N,)

	particle diameter



	dihedral_type_names

	JSON [String]

	(N_dihedral_types,)

	list containing the name of each dihedral type in JSON format



	dihedral_tag

	unsigned int

	(N_dihedral, 4)

	array of particle tags for each dihedral interaction



	dihedral_type

	unsigned int

	(N_dihedral,)

	array of dihedral interaction types



	dimensions

	unsigned int

	1

	number of dimensions of the system



	image

	int

	(N, 3)

	how many times each particle has passed through the periodic boundary conditions



	improper_type_names

	JSON [String]

	(N_improper_types,)

	list containing the name of each improper type in JSON format



	improper_tag

	unsigned int

	(N_improper, 4)

	array of particle tags for each improper interaction



	improper_type

	unsigned int

	(N_improper,)

	array of improper interaction types



	mass

	float

	(N,)

	particle mass



	moment_inertia

	float

	(N, 3)

	moment of inertia of each particle (diagonalized).



	orientation

	float

	(N, 4)

	particle orientation, expressed as a quaternion in the order (real, imag_i, imag_j, imag_k); can be high precision



	position

	float

	(N, 3)

	the position of each particle in the system (can be high precision)



	potential_energy

	float

	(N,)

	per-particle potential energy; can’t be used in MPI runs



	type

	unsigned int

	(N,)

	particle numerical type index



	type_names

	JSON [String]

	(N_types,)

	list containing the name of each particle type in JSON format



	velocity

	float

	(N, 3)

	velocity of each particle in the system











	
hoomd.init.read_gsd(filename, restart=None, frame=0, time_step=None)

	Read initial system state from an GSD file.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to read.


	restart (str [https://docs.python.org/3/library/stdtypes.html#str]) – If it exists, read the file restart instead of filename.


	frame (int [https://docs.python.org/3/library/functions.html#int]) – Index of the frame to read from the GSD file. Negative values index from the end of the file.


	time_step (int [https://docs.python.org/3/library/functions.html#int]) – (if specified) Time step number to initialize instead of the one stored in the GSD file.








All particles, bonds, angles, dihedrals, impropers, constraints, and box information
are read from the given GSD file at the given frame index. To read and write GSD files
outside of hoomd, see http://gsd.readthedocs.io/. hoomd.dump.gsd writes GSD files.

For restartable jobs, specify the initial condition in filename and the restart file in restart.
hoomd.init.read_gsd() will read the restart file if it exists, otherwise it will read filename.

If time_step is specified, its value will be used as the initial time
step of the simulation instead of the one read from the GSD file filename.
time_step is not applied when the file restart is read.

The result of hoomd.init.read_gsd() can be saved in a variable and later used to read and/or
change particle properties later in the script. See hoomd.data for more information.


See also

hoomd.dump.gsd








	
hoomd.init.read_snapshot(snapshot)

	Initializes the system from a snapshot.


	Parameters

	snapshot (hoomd.data snapshot) – The snapshot to initialize the system.





Snapshots temporarily store system data. Snapshots contain the complete simulation state in a
single object. Snapshots are set to time_step 0, and should not be used to restart a simulation.

Example use cases in which a simulation may be started from a snapshot include user code that generates initial
particle positions.

Example:

snapshot = my_system_create_routine(.. parameters ..)
system = init.read_snapshot(snapshot)






See also

hoomd.data








	
hoomd.init.restore_getar(filename, modes={'any': 'any'})

	Restore a subset of the current system’s parameters from a
trajectory archive (.tar, .zip, .sqlite) file. For a detailed
discussion of arguments, see read_getar().


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read from


	modes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of {property: frame} values, as described in read_getar()
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Overview







	hoomd.lattice.bcc

	Create a body centered cubic lattice (3D).



	hoomd.lattice.fcc

	Create a face centered cubic lattice (3D).



	hoomd.lattice.hex

	Create a hexagonal lattice (2D).



	hoomd.lattice.sc

	Create a simple cubic lattice (3D).



	hoomd.lattice.sq

	Create a square lattice (2D).



	hoomd.lattice.unitcell

	Define a unit cell.






Details

Define lattices.

hoomd.lattice provides a general interface to define lattices to initialize systems.


See also

hoomd.init.create_lattice().




	
hoomd.lattice.bcc(a, type_name='A')

	Create a body centered cubic lattice (3D).


	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lattice constant.


	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name.








The body centered cubic unit cell has 2 particles:


\begin{eqnarray*}
\vec{r}& =& \left(\begin{array}{ccc} 0 & 0 & 0 \\
                                     \frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\
                     \end{array}\right)
\end{eqnarray*}
And the box matrix:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} a & 0 & 0 \\
                                        0 & a & 0 \\
                                        0 & 0 & a \\
                     \end{array}\right)
\end{eqnarray*}





	
hoomd.lattice.fcc(a, type_name='A')

	Create a face centered cubic lattice (3D).


	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lattice constant.


	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name.








The face centered cubic unit cell has 4 particles:


\begin{eqnarray*}
\vec{r}& =& \left(\begin{array}{ccc} 0 & 0 & 0 \\
                                     0 & \frac{a}{2} & \frac{a}{2} \\
                                     \frac{a}{2} & 0 & \frac{a}{2} \\
                                     \frac{a}{2} & \frac{a}{2} & 0\\
                     \end{array}\right)
\end{eqnarray*}
And the box matrix:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} a & 0 & 0 \\
                                        0 & a & 0 \\
                                        0 & 0 & a \\
                     \end{array}\right)
\end{eqnarray*}





	
hoomd.lattice.hex(a, type_name='A')

	Create a hexagonal lattice (2D).


	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lattice constant.


	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name.








hex creates a hexagonal lattice in a rectangular box. It has 2 particles, one at the
corner and one at the center of the rectangle. This is not the primitive unit cell, but is more convenient to
work with because of its shape.


\begin{eqnarray*}
\vec{r}& =& \left(\begin{array}{ccc} 0 & 0 \\
                                     \frac{a}{2} & \sqrt{3} \frac{a}{2} \\
                     \end{array}\right)
\end{eqnarray*}
And the box matrix:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} a & 0 \\
                                        0 & \sqrt{3} a \\
                                        0 & 0 \\
                     \end{array}\right)
\end{eqnarray*}





	
hoomd.lattice.sc(a, type_name='A')

	Create a simple cubic lattice (3D).


	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lattice constant.


	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name.








The simple cubic unit cell has 1 particle:


\begin{eqnarray*}
\vec{r}& =& \left(\begin{array}{ccc} 0 & 0 & 0 \\
                     \end{array}\right)
\end{eqnarray*}
And the box matrix:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} a & 0 & 0 \\
                                        0 & a & 0 \\
                                        0 & 0 & a \\
                     \end{array}\right)
\end{eqnarray*}





	
hoomd.lattice.sq(a, type_name='A')

	Create a square lattice (2D).


	Parameters

	
	a (float [https://docs.python.org/3/library/functions.html#float]) – Lattice constant.


	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name.








The simple square unit cell has 1 particle:


\begin{eqnarray*}
\vec{r}& =& \left(\begin{array}{ccc} 0 & 0 \\
                     \end{array}\right)
\end{eqnarray*}
And the box matrix:


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} a & 0 \\
                                        0 & a \\
                     \end{array}\right)
\end{eqnarray*}





	
class hoomd.lattice.unitcell(N, a1, a2, a3, dimensions=3, position=None, type_name=None, mass=None, charge=None, diameter=None, moment_inertia=None, orientation=None)

	Define a unit cell.


	Parameters

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of particles in the unit cell.


	a1 (list [https://docs.python.org/3/library/stdtypes.html#list]) – Lattice vector (3-vector).


	a2 (list [https://docs.python.org/3/library/stdtypes.html#list]) – Lattice vector (3-vector).


	a3 (list [https://docs.python.org/3/library/stdtypes.html#list]) – Lattice vector (3-vector). Set to [0,0,1] in 2D lattices.


	dimensions (int [https://docs.python.org/3/library/functions.html#int]) – Dimensionality of the lattice (2 or 3).


	position (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle positions.


	type_name (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle type names.


	mass (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle masses.


	charge (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle charges.


	diameter (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle diameters.


	moment_inertia (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle moments of inertia.


	orientation (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of particle orientations.








A unit cell is a box definition (a1, a2, a3, dimensions), and particle properties for N particles.
You do not need to specify all particle properties. Any property omitted will be initialized to defaults (see
hoomd.data.make_snapshot()). hoomd.init.create_lattice initializes the system with many
copies of a unit cell.

unitcell is a completely generic unit cell representation. See other classes in the hoomd.lattice
module for convenience wrappers for common lattices.

Example:

uc = hoomd.lattice.unitcell(N = 2,
                            a1 = [1,0,0],
                            a2 = [0.2,1.2,0],
                            a3 = [-0.2,0, 1.0],
                            dimensions = 3,
                            position = [[0,0,0], [0.5, 0.5, 0.5]],
                            type_name = ['A', 'B'],
                            mass = [1.0, 2.0],
                            charge = [0.0, 0.0],
                            diameter = [1.0, 1.3],
                            moment_inertia = [[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]],
                            orientation = [[0.707, 0, 0, 0.707], [1.0, 0, 0, 0]]);






Note

a1, a2, a3 must define a right handed coordinate system.




	
get_snapshot()

	Get a snapshot.


	Returns

	A snapshot representing the lattice.






Attention

HOOMD-blue requires upper-triangular box matrices. The general box matrix (a1, a2, a3) set for this
unitcell and the particle positions and orientations will be rotated from provided values
into upper triangular form.








	
get_type_list()

	Get a list of the unique type names in the unit cell.


	Returns

	A list [https://docs.python.org/3/library/stdtypes.html#list] of the unique type names present in the unit cell.










	
get_typeid_mapping()

	Get a type name to typeid mapping.


	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] that maps type names to integer type ids.
















          

      

      

    

  

    
      
          
            
  
hoomd.meta

Overview







	hoomd.meta.dump_metadata

	Writes simulation metadata into a file.






Details

Write out simulation and environment context metadata.

Metadata is stored in form of key-value pairs in a JSON file and used
to summarize the per-run simulation parameters so that they can be easily
taken up by other scripts and stored in a database.

Example:

metadata = meta.dump_metadata()
meta.dump_metadata(filename = "metadata.json", user = {'debug': True}, indent=2)






	
hoomd.meta.dump_metadata(filename=None, user=None, indent=4)

	Writes simulation metadata into a file.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to write JSON metadata to (optional)


	user (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional metadata.


	indent (int [https://docs.python.org/3/library/functions.html#int]) – The json indentation size






	Returns

	metadata as a dictionary





When called, this function will query all registered forces, updaters etc.
and ask them to provide metadata. E.g. a pair potential will return
information about parameters, the Logger will output the filename it is
logging to, etc.

Custom metadata can be provided as a dictionary to user.

The output is aggregated into a dictionary and written to a
JSON file, together with a timestamp. The file is overwritten if
it exists.








          

      

      

    

  

    
      
          
            
  
hoomd.option

Overview







	hoomd.option.get_user

	Get user options.



	hoomd.option.set_autotuner_params

	Set autotuner parameters.



	hoomd.option.set_msg_file

	Set the message file.



	hoomd.option.set_notice_level

	Set the notice level.






Details

Set global options.

Options may be set on the command line or from a job script using hoomd.context.initialize().
The option.set_* commands override any settings made previously.


	
hoomd.option.get_user()

	Get user options.


	Returns

	List of user options passed in via –user=”arg1 arg2 …”










	
hoomd.option.set_autotuner_params(enable=True, period=100000)

	Set autotuner parameters.


	Parameters

	
	enable (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	period (int [https://docs.python.org/3/library/functions.html#int]) – Approximate period in time steps between retuning.








TODO: reference autotuner page here.






	
hoomd.option.set_msg_file(fname)

	Set the message file.


	Parameters

	fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name of the file to write. The file will be overwritten.
Set to None to direct messages back to stdout/stderr.





The message file may be changed before or after initialization, and may be changed many times during a job script.
Changing the message file will only affect messages sent after the change.


Note

Overrides --msg-file on the command line.








	
hoomd.option.set_notice_level(notice_level)

	Set the notice level.


	Parameters

	notice_level (int [https://docs.python.org/3/library/functions.html#int]) – 





The notice level may be changed before or after initialization, and may be changed
many times during a job script.


Note

Overrides --notice-level on the command line.








	
hoomd.option.set_num_threads(num_threads)

	Set the number of CPU (TBB) threads HOOMD uses


	Parameters

	num_threads (int [https://docs.python.org/3/library/functions.html#int]) – The number of threads






Note

Overrides --nthreads on the command line.










          

      

      

    

  

    
      
          
            
  
hoomd.update

Overview







	hoomd.update.balance

	Adjusts the boundaries of a domain decomposition on a regular 3D grid.



	hoomd.update.box_resize

	Rescale the system box size.



	hoomd.update.sort

	Sorts particles in memory to improve cache coherency.






Details

Modify the system state periodically.

When an updater is specified, it acts on the particle system every period steps to change
it in some way. See the documentation of specific updaters to find out what they do.


	
class hoomd.update.balance(x=True, y=True, z=True, tolerance=1.02, maxiter=1, period=1000, phase=0)

	Adjusts the boundaries of a domain decomposition on a regular 3D grid.


	Parameters

	
	x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in x dimension.


	y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in y dimension.


	z (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in z dimension.


	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Load imbalance tolerance (if <= 1.0, balance every step).


	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations to attempt in a single step.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Balancing will be attempted every a period time steps


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








Every period steps, the boundaries of the processor domains are adjusted to distribute the particle load close
to evenly between them. The load imbalance is defined as the number of particles owned by a rank divided by the
average number of particles per rank if the particles had a uniform distribution:


\[I = \frac{N(i)}{N / P}\]

where :math:` N(i) ` is the number of particles on processor \(i\), \(N\) is the total number of particles, and
\(P\) is the number of ranks.

In order to adjust the load imbalance, the sizes are rescaled by the inverse of the imbalance factor. To reduce
oscillations and communication overhead, a domain cannot move more than 5% of its current size in a single
rebalancing step, and the edge of a domain cannot move more than half the distance to its neighbors.

Simulations with interfaces (so that there is a particle density gradient) or clustering should benefit from load
balancing. The potential speedup is roughly \(I-1.0\), so that if the largest imbalance is 1.4, then the user
can expect a roughly 40% speedup in the simulation. This is of course an estimate that assumes that all algorithms
are roughly linear in \(N\), all GPUs are fully occupied, and the simulation is limited by the speed of the slowest
processor. It also assumes that all particles roughly equal. If you have a simulation where, for example, some particles
have significantly more pair force neighbors than others, this estimate of the load imbalance may not produce the
optimal results.

A load balancing adjustment is only performed when the maximum load imbalance exceeds a tolerance. The ideal load
balance is 1.0, so setting tolerance less than 1.0 will force an adjustment every period. The load balancer
can attempt multiple iterations of balancing every period, and up to maxiter attempts can be made. The optimal
values of period and maxiter will depend on your simulation.

Load balancing can be performed independently and sequentially for each dimension of the simulation box. A small
performance increase may be obtained by disabling load balancing along dimensions that are known to be homogeneous.
For example, if there is a planar vapor-liquid interface normal to the \(z\) axis, then it may be advantageous to
disable balancing along \(x\) and \(y\).

In systems that are well-behaved, there is minimal overhead of balancing with a small period. However, if the
system is not capable of being balanced (for example, due to the density distribution or minimum domain size), having
a small period and high maxiter may lead to a large performance loss. In such systems, it is currently best to
either balance infrequently or to balance once in a short test run and then set the decomposition statically in a
separate initialization.

Balancing is ignored if there is no domain decomposition available (MPI is not built or is running on a single rank).


	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(x=None, y=None, z=None, tolerance=None, maxiter=None)

	Change load balancing parameters.


	Parameters

	
	x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in x dimension.


	y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in y dimension.


	z (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, balance in z dimension.


	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Load imbalance tolerance (if <= 1.0, balance every step).


	maxiter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations to attempt in a single step.








Examples:

balance.set_params(x=True, y=False)
balance.set_params(tolerance=0.02, maxiter=5)










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.update.box_resize(Lx=None, Ly=None, Lz=None, xy=None, xz=None, yz=None, period=1, L=None, phase=0, scale_particles=True)

	Rescale the system box size.


	Parameters

	
	L (hoomd.variant) – (if set) box length in the x,y, and z directions as a function of time (in distance units)


	Lx (hoomd.variant) – (if set) box length in the x direction as a function of time (in distance units)


	Ly (hoomd.variant) – (if set) box length in the y direction as a function of time (in distance units)


	Lz (hoomd.variant) – (if set) box length in the z direction as a function of time (in distance units)


	xy (hoomd.variant) – (if set) X-Y tilt factor as a function of time (dimensionless)


	xz (hoomd.variant) – (if set) X-Z tilt factor as a function of time (dimensionless)


	yz (hoomd.variant) – (if set) Y-Z tilt factor as a function of time (dimensionless)


	period (int [https://docs.python.org/3/library/functions.html#int]) – The box size will be updated every period time steps.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.


	scale_particles (bool [https://docs.python.org/3/library/functions.html#bool]) – When True (the default), scale particles into the new box. When False, do not change particle positions when changing the box.








Every period time steps, the system box dimensions is updated to values given by
the user (in a variant). As an option, the particles can either be left in place
as the box is changed or their positions can be scaled with the box.


Note

If period is set to None, then the given box lengths are applied immediately and
periodic updates are not performed.



L, Lx, Ly, Lz, xy, xz, yz can either be set to a constant number or a hoomd.variant.
if any of the box parameters are not specified, they are set to maintain the same value in the
current box.

Use L as a shorthand to specify Lx, Ly, and Lz to the same value.

By default, particle positions are rescaled with the box. Set scale_particles=False
to leave particles in place when changing the box.

If, under rescaling, tilt factors get too large, the simulation may slow down due
to too many ghost atoms being communicated. hoomd.update.box_resize
does NOT reset the box to orthorhombic shape if this occurs (and does not move
the next periodic image into the primary cell).

Examples:

update.box_resize(L = hoomd.variant.linear_interp([(0, 20), (1e6, 50)]))
box_resize = update.box_resize(L = hoomd.variant.linear_interp([(0, 20), (1e6, 50)]), period = 10)
update.box_resize(Lx = hoomd.variant.linear_interp([(0, 20), (1e6, 50)]),
                  Ly = hoomd.variant.linear_interp([(0, 20), (1e6, 60)]),
                  Lz = hoomd.variant.linear_interp([(0, 10), (1e6, 80)]))
update.box_resize(Lx = hoomd.variant.linear_interp([(0, 20), (1e6, 50)]), Ly = 10, Lz = 10)

# Shear the box in the xy plane using Lees-Edwards boundary conditions
update.box_resize(xy = hoomd.variant.linear_interp([(0,0), (1e6, 1)]))






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.update.sort

	Sorts particles in memory to improve cache coherency.


Warning

Do not specify hoomd.update.sort explicitly in your script. HOOMD creates
a sorter by default.



Every period time steps, particles are reordered in memory based on
a Hilbert curve. This operation is very efficient, and the reordered particles
significantly improve performance of all other algorithmic steps in HOOMD.

The reordering is accomplished by placing particles in spatial bins. A Hilbert curve
is generated that traverses these bins and particles are reordered in memory in the
same order in which they fall on the curve. The grid dimension used over the course
of the simulation is held constant, and the default is chosen to be as fine as possible
without utilizing too much memory. The grid size can be changed with set_params().


Warning

Memory usage by the sorter grows quickly with the grid size:


	grid=128 uses 8 MB


	grid=256 uses 64 MB


	grid=512 uses 512 MB


	grid=1024 uses 4096 MB







Note

2D simulations do not use any additional memory and default to grid=4096.



A sorter is created by default. To disable it or modify parameters, save the
context and access the sorter through it:

c = context.initialize();
hoomd.init.create_random(N=1000, phi_p=0.2)
# the sorter is only available after initialization
c.sorter.disable()






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(grid=None)

	Change sorter parameters.


	Parameters

	grid (int [https://docs.python.org/3/library/functions.html#int]) – New grid dimension (if set)






	Examples::

	sorter.set_params(grid=128)










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.












          

      

      

    

  

    
      
          
            
  
hoomd.util

Overview







	hoomd.util.cuda_profile_start

	Start CUDA profiling.



	hoomd.util.cuda_profile_stop

	Stop CUDA profiling.



	hoomd.util.quiet_status

	Quiet the status line output.



	hoomd.util.unquiet_status

	Resume the status line output.






Details

Utilities.


	
hoomd.util.cuda_profile_start()

	Start CUDA profiling.

When using nvvp to profile CUDA kernels in hoomd jobs, you usually don’t care about all the initialization and
startup. cuda_profile_start() allows you to not even record that. To use, uncheck the box “start profiling on
application start” in your nvvp session configuration. Then, call cuda_profile_start() in your hoomd script when
you want nvvp to start collecting information.

Example:

from hoomd import *
init.read_xml("init.xml");
# setup....
run(30000);  # warm up and auto-tune kernel block sizes
option.set_autotuner_params(enable=False);  # prevent block sizes from further autotuning
cuda_profile_start();
run(100);










	
hoomd.util.cuda_profile_stop()

	Stop CUDA profiling.


See also

cuda_profile_start().








	
hoomd.util.quiet_status()

	Quiet the status line output.

After calling hoomd.util.quiet_status(), hoomd will no longer print out the line of
code that executes each hoomd script command. Call hoomd.util.unquiet_status() to
enable the status messages again. Messages are only enabled after a number of
hoomd.util.unquiet_status() calls equal to the number of prior
hoomd.util.quiet_status() calls.






	
hoomd.util.unquiet_status()

	Resume the status line output.


See also

hoomd.util.quiet_status()










          

      

      

    

  

    
      
          
            
  
hoomd.variant

Overview







	hoomd.variant.linear_interp

	Linearly interpolated variant.






Details

Specify values that vary over time.

This package contains various commands for creating quantities that can vary
smoothly over the course of a simulation. For example, set the temperature in
a NVT simulation to slowly heat or cool the system over a long simulation.


	
class hoomd.variant.linear_interp(points, zero='now')

	Linearly interpolated variant.


	Parameters

	
	points (list [https://docs.python.org/3/library/stdtypes.html#list]) – Set points in the linear interpolation (see below)


	zero (int [https://docs.python.org/3/library/functions.html#int]) – Specify absolute time step number location for 0 in points. Use ‘now’ to indicate the current step.








hoomd.variant.linear_interp creates a time-varying quantity where the
value at each time step is determined by linear interpolation between a given set of points.

At time steps before the initial point, the value is identical to the value at the first
given point. At time steps after the final point, the value is identical to the value at
the last given point. All points between are determined by linear interpolation.

Time steps given to hoomd.variant.linear_interp are relative to the current
step of the simulation, and starts counting from 0 at the time of creation. Set
zero to control the relative starting point.

points is a list of (time step, set value) tuples. For example, to specify
a series of points that goes from 10 at time step 0 to 20 at time step 100 and then
back down to 5 at time step 200:

points = [(0, 10), (100, 20), (200, 5)]





Any number of points can be specified in any order. However, listing them
monotonically increasing in time will result in a much more human readable set
of values.

Examples:

L = variant.linear_interp(points = [(0, 10), (100, 20), (200, 5)])
V = variant.linear_interp(points = [(0, 10), (1e6, 20)], zero=80000)
integrate.nvt(group=all, tau = 0.5,
    T = variant.linear_interp(points = [(0, 1.0), (1e5, 2.0)])












          

      

      

    

  

    
      
          
            
  
hoomd.hdf5

Overview







	hoomd.hdf5.File

	



	hoomd.hdf5.log

	






Details

Commands that require the h5py package at runtime.

All commands that are part of this module require the h5py package a
python API for hdf5. In addition, this module is an opt-in. As a
consequence you’ll need to import it via import hoomd.hdf5 before
you can use any command.


	
class hoomd.hdf5.File(*args, **kwargs)

	Thin wrapper of the h5py.File class.

This class ensures, that opening and close operations within a
context manager are only executed on the root MPI rank.


Note

This class can be used like the h5py.File class, but the user has to
make sure that all operations are only executed on the root rank.








	
class hoomd.hdf5.log(h5file, period, quantities=[], matrix_quantities=[], phase=0)

	Log a number of calculated quantities or matrices to a hdf5 file.


	Parameters

	
	h5file (hoomd.hdf5.File) – Instance describing the opened h5file.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Quantities are logged every period time steps


	quantities (list [https://docs.python.org/3/library/stdtypes.html#list]) – Quantities to log.


	matrix_quantities (list [https://docs.python.org/3/library/stdtypes.html#list]) – Matrix quantities to log.


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – When False (the default) the existing log will be append. When True the file will be overwritten.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0 execute on steps where (step +phase) % period == 0.








For details on the loggable quantities refer hoomd.analyze.log for details.

The non-matrix quantities are combined in an array ‘quantities’ in the hdf5 file.
The attributes list all the names of the logged quantities and their position in the file.

Matrix quantities are logged as a separate data set each in the file. The name of the data set
corresponds to the name of the quantity. The first dimension of the data set is counting the
logged time step. The other dimension correspond to the dimensions of the logged matrix.


Note

The number and order of non-matrix quantities cannot change compared to data which is already
stored in the hdf5 file. As a result, if you append to a file make sure you are logging the
same values as before. In addition, also during a run with multiple hoomd.run() commands
the logged values can not change.




Note

The dimensions of logged matrix quantities cannot change compared to a matrix with same name
stored in the file. This applies for appending files as well as during a single simulation
run.



Examples:

with hoomd.hdf5.File("log.h5", "w") as h5file:
   #general setup

   log = hoomd.hdf5.log(filename='log.h5', quantities=['my_quantity', 'cosm'], matrix_quantities = ['random_matrix'], period=100)
   log.register_callback('my_quantity', lambda timestep: timestep**2)
   log.register_callback('cosm', lambda timestep: math.cos(logger.query('my_quantity')))
   def random_matrix(timestep):
      return numpy.random.rand(23, 56)
   log.register_callback('random_matrix', random_matrix, True)
   #more setup
   run(200)






	
disable()

	Disable the logger.

Examples:

logger.disable()





Executing the disable command will remove the logger from the system.
Any hoomd.run() command executed after disabling the logger will not use that
logger during the simulation. A disabled logger can be re-enabled
with enable().






	
enable()

	Enables the logger

Examples:

logger.enable()





See disable().






	
query(quantity, force_matrix=False)

	
Get the last logged value of a quantity which has been written to the file.
If quantity is registered as a non-matrix quantity, its value is returned.
If it is not registered as a non-matrix quantity, it is assumed to be a matrix quantity.
If a quantity exists as non-matrix and matrix quantity with the same name, force_matrix
can be used to obtain the matrix value.





	Parameters

	
	quantity (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the quantity to query


	force_matrix (bool [https://docs.python.org/3/library/functions.html#bool]) – the name of the quantity is









Note

Matrix quantities are not efficiently cached by the class,
so calling this function multiple time, may not be efficient.








	
register_callback(name, callback, matrix=False)

	Register a callback to produce a logged quantity.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the quantity


	callback (callable) – A python callable object (i.e. a lambda, function, or class that implements __call__)


	matrix (bool [https://docs.python.org/3/library/functions.html#bool]) – Is the callback a computing a matrix and thus returning a numpy array instead of a single float?








The callback method must take a single argument, the current
timestep, and return a single floating point value to be
logged. If the callback returns a matrix quantity the return
value must be a numpy array constant dimensions of each call.


Note

One callback can query the value of another, but logged quantities are evaluated in order from left to right.



Examples:

log = hoomd.hdf5.log(filename='log.h5', quantities=['my_quantity', 'cosm'], matrix_quantities = ['random_matrix'], period=100)
log.register_callback('my_quantity', lambda timestep: timestep**2)
log.register_callback('cosm', lambda timestep: math.cos(logger.query('my_quantity')))
def random_matrix(timestep):
    return numpy.random.rand(23, 56)
log.register_callback('random_matrix', random_matrix, True)










	
set_params(quantities=None, matrix_quantities=None)

	Change the parameters of the log.


Warning

Do not change the number or order of logged non-matrix quantities compared to values stored in the file.














          

      

      

    

  

    
      
          
            
  
hpmc

Details

Hard particle Monte Carlo

HPMC performs hard particle Monte Carlo simulations of a variety of classes of shapes.

Overview

HPMC implements hard particle Monte Carlo in HOOMD-blue.

Logging

The following quantities are provided by the integrator for use in HOOMD-blue’s hoomd.analyze.log.


	hpmc_sweep - Number of sweeps completed since the start of the MC integrator


	hpmc_translate_acceptance - Fraction of translation moves accepted (averaged only over the last time step)


	hpmc_rotate_acceptance - Fraction of rotation moves accepted (averaged only over the last time step)


	hpmc_d - Maximum move displacement


	hpmc_a - Maximum rotation move


	hpmc_move_ratio - Probability of making a translation move (1- P(rotate move))


	hpmc_overlap_count - Count of the number of particle-particle overlaps in the current system configuration




With non-interacting depletant (implicit=True), the following log quantities are available:


	hpmc_fugacity - The current value of the depletant fugacity (in units of density, volume^-1)


	hpmc_ntrial - The current number of configurational bias attempts per overlapping depletant


	hpmc_insert_count - Number of depletants inserted per colloid


	hpmc_reinsert_count - Number of overlapping depletants reinserted per colloid by configurational bias MC


	hpmc_free_volume_fraction - Fraction of free volume to total sphere volume after a trial move has been proposed
(sampled inside a sphere around the new particle position)


	hpmc_overlap_fraction - Fraction of depletants in excluded volume after trial move to depletants in free volume before move


	hpmc_configurational_bias_ratio - Ratio of configurational bias attempts to depletant insertions




With patch energies defined, the following quantities are available:
- hpmc_patch_energy - The potential energy of the system resulting from the patch interaction.
- hpmc_patch_rcut - The cutoff radius in the patch energy interaction.

compute.free_volume provides the following loggable quantities:
- hpmc_free_volume - The free volume estimate in the simulation box obtained by MC sampling (in volume units)

update.boxmc provides the following loggable quantities:


	hpmc_boxmc_trial_count - Number of box changes attempted since the start of the boxmc updater


	hpmc_boxmc_volume_acceptance - Fraction of volume/length change trials accepted (averaged from the start of the last run)


	hpmc_boxmc_ln_volume_acceptance - Fraction of log(volume) change trials accepted (averaged from the start of the last run)


	hpmc_boxmc_shear_acceptance - Fraction of shear trials accepted (averaged from the start of the last run)


	hpmc_boxmc_aspect_acceptance - Fraction of aspect trials accepted (averaged from the start of the last run)


	hpmc_boxmc_betaP Current value of the \(\beta p\) value of the boxmc updater




update.muvt provides the following loggable quantities.


	hpmc_muvt_insert_acceptance - Fraction of particle insertions accepted (averaged from start of run)


	hpmc_muvt_remove_acceptance - Fraction of particle removals accepted (averaged from start of run)


	hpmc_muvt_volume_acceptance - Fraction of particle removals accepted (averaged from start of run)




update.clusters() provides the following loggable quantities.


	hpmc_clusters_moves - Fraction of cluster moves divided by the number of particles


	hpmc_clusters_pivot_acceptance - Fraction of pivot moves accepted


	hpmc_clusters_reflection_acceptance - Fraction of reflection moves accepted


	hpmc_clusters_swap_acceptance - Fraction of swap moves accepted


	hpmc_clusters_avg_size - Average cluster size




Timestep definition

HOOMD-blue started as an MD code where timestep has a clear meaning. MC simulations are run
for timesteps. In exact terms, this means different things on the CPU and GPU and something slightly different when
using MPI. The behavior is approximately normalized so that user scripts do not need to drastically change
run() lengths when switching from one execution resource to another.

In the GPU implementation, one trial move is applied to a number of randomly chosen particles in each cell during one
timestep. The number of selected particles is nselect*ceil(avg particles per cell) where nselect is a user-chosen
parameter. The default value of nselect is 4, which achieves optimal performance for a wide variety of benchmarks.
Detailed balance is obeyed at the level of a timestep. In short: One timestep is NOT equal to one sweep,
but is approximately nselect sweeps, which is an overestimation.

In the single-threaded CPU implementation, one trial move is applied nselect times to each of the N particles
during one timestep. In parallel MPI runs, one trial moves is applied nselect times to each particle in the active
region. There is a small strip of inactive region near the boundaries between MPI ranks in the domain decomposition.
The trial moves are performed in a shuffled order so detailed balance is obeyed at the level of a timestep.
In short: One timestep is approximately nselect sweeps (N trial moves). In single-threaded runs, the
approximation is exact, but it is slightly underestimated in MPI parallel runs.

To approximate a fair comparison of dynamics between CPU and GPU timesteps, log the hpmc_sweep
quantity to get the number sweeps completed so far at each logged timestep.

See J. A. Anderson et. al. 2016 [http://dx.doi.org/10.1016/j.cpc.2016.02.024] for design and implementation details.

Stability

hoomd.hpmc is stable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts that follow documented interfaces for functions and classes
will not require any modifications. Maintainer: Joshua A. Anderson

Modules
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hpmc.analyze

Overview







	hpmc.analyze.sdf

	






Details

Compute properties of hard particle configurations.


	
class hoomd.hpmc.analyze.sdf(mc, filename, xmax, dx, navg, period, overwrite=False, phase=0)

	Compute the scale distribution function.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output file name.


	xmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximum x value at the right hand side of the rightmost bin (distance units).


	dx (float [https://docs.python.org/3/library/functions.html#float]) – Bin width (distance units).


	navg (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to average before writing the histogram to the file.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of timesteps between histogram evaluations.


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to overwrite filename instead of appending to it.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








sdf computes a distribution function of scale parameters \(x\). For each particle, it finds the smallest
scale factor \(1+x\) that would cause the particle to touch one of its neighbors and records that in the histogram
\(s(x)\). The histogram is discrete and \(s(x_i) = s[i]\) where \(x_i = i \cdot dx + dx/2\).

In an NVT simulation, the extrapolation of \(s(x)\) to \(x = 0\), \(s(0+)\) is related to the pressure.


\[\frac{P}{kT} = \rho \left(1 + \frac{s(0+)}{2d} \right)\]

where \(d\) is the dimensionality of the system and \(\rho\) is the number density.

Extrapolating \(s(0+)\) is not trivial. Here are some suggested parameters, but they may not work in all cases.



	xmax = 0.02


	dx = 1e-4


	Polynomial curve fit of degree 5.







In systems near densest packings, dx=1e-5 may be needed along with either a smaller xmax or a smaller region to fit.
A good rule of thumb might be to fit a region where numpy.sum(s[0:n]*dx) ~ 0.5 - but this needs further testing to
confirm.

sdf averages navg histograms together before writing them out to a
text file in a plain format: “timestep bin_0 bin_1 bin_2 …. bin_n”.

sdf works well with restartable jobs. Ensure that navg*period is an integer fraction \(1/k\) of the
restart period. Then sdf will have written the final output to its file just before the restart gets
written. The new data needed for the next line of values is entirely collected after the restart.


Warning

sdf does not compute correct pressures for simulations with concave particles.



Numpy extrapolation code:

def extrapolate(s, dx, xmax, degree=5):
  # determine the number of values to fit
  n_fit = int(math.ceil(xmax/dx));
  s_fit = s[0:n_fit];
  # construct the x coordinates
  x_fit = numpy.arange(0,xmax,dx)
  x_fit += dx/2;
  # perform the fit and extrapolation
  p = numpy.polyfit(x_fit, s_fit, degree);
  return numpy.polyval(p, 0.0);





Examples:

mc = hpmc.integrate.sphere(seed=415236)
analyze.sdf(mc=mc, filename='sdf.dat', xmax=0.02, dx=1e-4, navg=100, period=100)
analyze.sdf(mc=mc, filename='sdf.dat', xmax=0.002, dx=1e-5, navg=100, period=100)






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.












          

      

      

    

  

    
      
          
            
  
hpmc.compute

Overview







	hpmc.compute.free_volume

	Compute the free volume available to a test particle by stochastic integration.






Details

Compute properties of hard particle configurations.


	
class hoomd.hpmc.compute.free_volume(mc, seed, suffix='', test_type=None, nsample=None)

	Compute the free volume available to a test particle by stochastic integration.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed for MC integration.


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of particle to use for integration


	nsample (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to use in MC integration


	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Suffix to use for log quantity








:py:class`free_volume` computes the free volume of a particle assembly using stochastic integration with a test particle type.
It works together with an HPMC integrator, which defines the particle types used in the simulation.
As parameters it requires the number of MC integration samples (nsample), and the type of particle (test_type)
to use for the integration.

Once initialized, the compute provides a log quantity
called hpmc_free_volume, that can be logged via hoomd.analyze.log.
If a suffix is specified, the log quantities name will be
hpmc_free_volume_suffix.

Examples:

mc = hpmc.integrate.sphere(seed=415236)
compute.free_volume(mc=mc, seed=123, test_type='B', nsample=1000)
log = analyze.log(quantities=['hpmc_free_volume'], period=100, filename='log.dat', overwrite=True)






	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations












          

      

      

    

  

    
      
          
            
  
hpmc.data

Overview







	hpmc.data.param_dict

	Manage shape parameters.






Details

Shape data structures.


	
class hoomd.hpmc.data.param_dict(mc)

	Manage shape parameters.

The parameters for all hpmc integrator shapes (hoomd.hpmc.integrate) are specified using this class.
Parameters are specified per particle type. Every HPMC integrator has a member shape_param that can read and
set parameters of the shapes.

param_dict can be used as a dictionary to access parameters by type. You can read individual parameters
or set parameters with set().

Example:

mc = hpmc.integrate.sphere();
mc.shape_param['A'].set(diameter=2.0)
mc.shape_param['B'].set(diameter=0.1)
dA = mc.shape_param['A'].diameter
dB = mc.shape_param['B'].diameter






	
set(types, **params)

	Sets parameters for particle type(s).


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type (string) or list of types


	params – Named parameters (see specific integrator for required parameters - hoomd.hpmc.integrate)








Calling set() results in one or more parameters being set for a shape. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the hpmc
integrator you are setting these coefficients for, see the corresponding documentation.

All possible particle types types defined in the simulation box must be specified before executing hoomd.run().
You will receive an error if you fail to do so. It is an error to specify coefficients for
particle types that do not exist in the simulation.

To set the same parameters for many particle types, provide a list of type names instead of a single
one. All types in the list will be set to the same parameters. A convenient wildcard that lists all types
of particles in the simulation can be gotten from a saved sysdef from the init command.

Examples:

mc.shape_param.set('A', diameter=1.0)
mc.shape_param.set('B', diameter=2.0)
mc.shape_param.set(['A', 'B'], diameter=2.0)






Note

Single parameters can not be updated. If both diameter and length are required for a particle type,
then executing coeff.set(‘A’, diameter=1.5) will fail one must call coeff.set(‘A’, diameter=1.5, length=2.0)














          

      

      

    

  

    
      
          
            
  
hpmc.field

Overview







	hpmc.field.callback

	Use a python-defined energy function in MC integration



	hpmc.field.external_field_composite

	Manage multiple external fields.



	hpmc.field.frenkel_ladd_energy

	Compute the Frenkel-Ladd Energy of a crystal.



	hpmc.field.lattice_field

	Restrain particles on a lattice



	hpmc.field.wall

	Manage walls (an external field type).






Details

Apply external fields to HPMC simulations.


	
class hoomd.hpmc.field.callback(mc, energy_function, composite=False)

	Use a python-defined energy function in MC integration


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	callback (callable) – A python function to evaluate the energy of a configuration


	composite (bool [https://docs.python.org/3/library/functions.html#bool]) – True if this evaluator is part of a composite external field








Example:

def energy(snapshot):
    # evaluate the energy in a linear potential gradient along the x-axis
    gradient = (5,0,0)
    e = 0
    for p in snap.particles.position:
        e -= numpy.dot(gradient,p)
    return e

mc = hpmc.integrate.sphere(seed=415236);
mc.shape_param.set('A',diameter=1.0)
hpmc.field.callback(mc=mc, energy_function=energy);
run(100)






	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations










	
class hoomd.hpmc.field.external_field_composite(mc, fields=None)

	Manage multiple external fields.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator (don’t specify a new integrator later, external_field_composite will continue to use the old one)


	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of external fields to combine together.








external_field_composite allows the user to create and compute multiple
external fields. Once created use add_field() to add a new field.

Once initialized, the compute provides a log quantities that other external
fields create. See those external fields to find the quantities.

Examples:

mc = hpmc.integrate.shape(...);
walls = hpmc.field.walls(...)
lattice = hpmc.field.lattice(...)
composite_field = hpmc.field.external_field_composite(mc, fields=[walls, lattice])






	
add_field(fields)

	Add an external field to the ensemble.


	Parameters

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of fields to add





Example:

mc = hpmc.integrate.shape(...);
composite_field = hpmc.compute.external_field_composite(mc)
walls = hpmc.compute.walls(..., setup=False)
lattice = hpmc.compute.lattice(..., setup=False)
composite_field.add_field(fields=[walls, lattice])










	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations










	
class hoomd.hpmc.field.frenkel_ladd_energy(mc, ln_gamma, q_factor, r0, q0, drift_period, symmetry=[])

	Compute the Frenkel-Ladd Energy of a crystal.


	Parameters

	
	ln_gamma (float [https://docs.python.org/3/library/functions.html#float]) – log of the translational spring constant


	q_factor (float [https://docs.python.org/3/library/functions.html#float]) – scale factor between the translational spring constant and rotational spring constant


	r0 (list [https://docs.python.org/3/library/stdtypes.html#list]) – reference lattice positions


	q0 (list [https://docs.python.org/3/library/stdtypes.html#list]) – reference lattice orientations


	drift_period (int [https://docs.python.org/3/library/functions.html#int]) – period call the remove drift updater








frenkel_ladd_energy interacts with lattice_field
and hoomd.hpmc.update.remove_drift.

Once initialized, the compute provides the log quantities from the lattice_field.


Warning

The lattice energies and standard deviations logged by
lattice_field are multiplied by the spring constant. As a result,
when computing the free energies from frenkel_ladd_energy class,
instead of integrating the free energy over the spring constants, you should
integrate over the natural log of the spring constants.



Example:

mc = hpmc.integrate.convex_polyhedron(seed=seed);
mc.shape_param.set("A", vertices=verts)
mc.set_params(d=0.005, a=0.005)
#set the FL parameters
fl = hpmc.compute.frenkel_ladd_energy(mc=mc, ln_gamma=0.0, q_factor=10.0, r0=rs, q0=qs, drift_period=1000)






	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
reset_statistics()

	Reset the statistics counters.

Example:

mc = hpmc.integrate.sphere(seed=415236);
fl = hpmc.compute.frenkel_ladd_energy(mc=mc, ln_gamma=0.0, q_factor=10.0, r0=rs, q0=qs, drift_period=1000)
ks = np.linspace(1000, 0.01, 100);
for k in ks:
  fl.set_params(ln_gamma=math.log(k), q_factor=10.0);
  fl.reset_statistics();
  run(1000)










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(ln_gamma=None, q_factor=None)

	Set the Frenkel-Ladd parameters.


	Parameters

	
	ln_gamma (float [https://docs.python.org/3/library/functions.html#float]) – log of the translational spring constant


	q_factor (float [https://docs.python.org/3/library/functions.html#float]) – scale factor between the translational spring constant and rotational spring constant








Example:

mc = hpmc.integrate.sphere(seed=415236);
fl = hpmc.compute.frenkel_ladd_energy(mc=mc, ln_gamma=0.0, q_factor=10.0, r0=rs, q0=qs, drift_period=1000)
ks = np.linspace(1000, 0.01, 100);
for k in ks:
  fl.set_params(ln_gamma=math.log(k), q_factor=10.0);
  fl.reset_statistics();
  run(1000)














	
class hoomd.hpmc.field.lattice_field(mc, position=[], orientation=[], k=0.0, q=0.0, symmetry=[], composite=False)

	Restrain particles on a lattice


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	position (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of positions to restrain each particle (distance units).


	orientation (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of orientations to restrain each particle (quaternions).


	k (float [https://docs.python.org/3/library/functions.html#float]) – translational spring constant.


	q (float [https://docs.python.org/3/library/functions.html#float]) – rotational spring constant.


	symmetry (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of equivalent quaternions for the shape.


	composite (bool [https://docs.python.org/3/library/functions.html#bool]) – Set this to True when this field is part of a external_field_composite.








lattice_field specifies that a harmonic spring is added to every particle:


\[\begin{split}V_{i}(r)  = k_r*(r_i-r_{oi})^2 \\
V_{i}(q)  = k_q*(q_i-q_{oi})^2\end{split}\]


Note

1/2 is not included in the formulas, specify your spring constants accordingly.




	\(k_r\) - translational spring constant.


	\(r_{o}\) - lattice positions (in distance units).


	\(k_q\) - rotational spring constant.


	\(q_{o}\) - lattice orientations (quaternion)




Once initialized, the compute provides the following log quantities that can be logged via analyze.log:


	lattice_energy – total lattice energy


	lattice_energy_pp_avg – average lattice energy per particle multiplied by the spring constant


	lattice_energy_pp_sigma – standard deviation of the lattice energy per particle multiplied by the spring constant


	lattice_translational_spring_constant – translational spring constant


	lattice_rotational_spring_constant – rotational spring constant


	lattice_num_samples – number of samples used to compute the average and standard deviation





Warning

The lattice energies and standard deviations logged by this class are multiplied by the spring constant.



Example:

mc = hpmc.integrate.sphere(seed=415236);
hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
log = analyze.log(quantities=['lattice_energy'], period=100, filename='log.dat', overwrite=True);






	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
get_average_energy()

	
	Get the average energy per particle of the lattice field.

	This is a collective call and must be called on all ranks.



	Example::

	mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=exp(15));
run(20000)
avg_eng = lattice.get_average_energy() //  should be about 1.5kT










	
get_energy()

	
	Get the current energy of the lattice field.

	This is a collective call and must be called on all ranks.



	Example::

	mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
run(20000)
eng = lattice.get_energy()










	
get_sigma_energy()

	
	Gives the standard deviation of the average energy per particle of the lattice field.

	This is a collective call and must be called on all ranks.



	Example::

	mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=exp(15));
run(20000)
sig_eng = lattice.get_sigma_energy()










	
reset(timestep=None)

	Reset the statistics counters.


	Parameters

	timestep (int [https://docs.python.org/3/library/functions.html#int]) – the timestep to pass into the reset function.





Example:

mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
ks = np.linspace(1000, 0.01, 100);
for k in ks:
  lattice.set_params(k=k, q=0.0);
  lattice.reset();
  run(1000)










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(k, q)

	Set the translational and rotational spring constants.


	Parameters

	
	k (float [https://docs.python.org/3/library/functions.html#float]) – translational spring constant.


	q (float [https://docs.python.org/3/library/functions.html#float]) – rotational spring constant.








Example:

mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
ks = np.linspace(1000, 0.01, 100);
for k in ks:
  lattice.set_params(k=k, q=0.0);
  run(1000)










	
set_references(position=[], orientation=[])

	Reset the reference positions or reference orientations.


	Parameters

	
	position (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of positions to restrain each particle.


	orientation (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of orientations to restrain each particle.








Example:

mc = hpmc.integrate.sphere(seed=415236);
lattice = hpmc.field.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
lattice.set_references(position=bcc_lattice)














	
class hoomd.hpmc.field.wall(mc, composite=False)

	Manage walls (an external field type).


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	composite (bool [https://docs.python.org/3/library/functions.html#bool]) – Set this to True when this field is part of a external_field_composite.








wall allows the user to implement one or more walls. If multiple walls are added, then particles are
confined by the INTERSECTION of all of these walls. In other words, particles are confined by all walls if they
independently satisfy the confinement condition associated with each separate wall.
Once you’ve created an instance of this class, use add_sphere_wall()
to add a new spherical wall, add_cylinder_wall() to add a new cylindrical wall, or
add_plane_wall() to add a new plane wall.

Specialized overlap checks have been written for supported combinations of wall types and particle shapes.
These combinations are:
* Sphere particles: sphere walls, cylinder walls, plane walls
* Convex polyhedron particles: sphere walls, cylinder walls, plane walls
* Convex spheropolyhedron particles: sphere walls

Once initialized, the compute provides the following log quantities that can be logged via hoomd.analyze.log:


	hpmc_wall_volume : the volume associated with the intersection of implemented walls. This number is only meaningful
if the user has initially provided it through set_volume(). It will subsequently change when
the box is resized and walls are scaled appropriately.


	hpmc_wall_sph_rsq-i : the squared radius of the spherical wall indexed by i, beginning at 0 in the order the sphere
walls were added to the system.


	hpmc_wall_cyl_rsq-i : the squared radius of the cylindrical wall indexed by i, beginning at 0 in the order the
cylinder walls were added to the system.




Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.set_volume(4./3.*np.pi);
log = analyze.log(quantities=['hpmc_wall_volume','hpmc_wall_sph_rsq-0'], period=100, filename='log.dat', overwrite=True);






	
add_cylinder_wall(radius, origin, orientation, inside=True)

	Add a cylindrical wall to the simulation.


	Parameters

	
	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of cylindrical wall


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – origin (center) of cylindrical wall


	orientation (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – vector that defines the direction of the long axis of the cylinder. will be normalized automatically by hpmc.


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, then particles are CONFINED by the wall if they exist entirely inside the cylinder (in the portion of connected space that contains the origin).
When False, then particles are CONFINED by the wall if they exist entirely outside the cylinder (in the portion of connected space that does not contain the origin). DEFAULTS to True.








Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_cylinder_wall(radius = 1.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);










	
add_plane_wall(normal, origin)

	Add a plane wall to the simulation.


	Parameters

	
	normal (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – vector normal to the plane. this, in combination with a point on the plane, defines the plane entirely. It will be normalized automatically by hpmc.
The direction of the normal vector defines the confinement condition associated with the plane wall. If every part of a particle exists in the halfspace into which the normal points, then that particle is CONFINED by the plane wall.


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – a point on the plane wall. this, in combination with the normal vector, defines the plane entirely.








Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_plane_wall(normal = [0, 0, 1], origin = [0, 0, 0]);










	
add_sphere_wall(radius, origin, inside=True)

	Add a spherical wall to the simulation.


	Parameters

	
	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of spherical wall


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – origin (center) of spherical wall.


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, particles are CONFINED by the wall if they exist entirely inside the sphere (in the portion of connected space that contains the origin).
When False, then particles are CONFINED by the wall if they exist entirely outside the sphere (in the portion of connected space that does not contain the origin).








Quick Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);










	
count_overlaps(exit_early=False)

	Count the overlaps associated with the walls.


	Parameters

	exit_early (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, stop counting overlaps after the first one is found.



	Returns

	The number of overlaps associated with the walls





A particle “overlaps” with a wall if it fails to meet the confinement condition associated with the wall.

Example

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
run(100)
num_overlaps = ext_wall.count_overlaps();






	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
get_curr_box()

	Get the simulation box that the wall class is currently storing.


	Returns

	The boxdim object that the wall class is currently storing.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.set_volume(4./3.*np.pi);
run(100)
curr_box = ext_wall.get_curr_box();










	
get_cylinder_wall_param(index, param)

	Access a parameter associated with a particular cylinder wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the cylinder wall to be accessed. indices begin at 0 in the order the cylinder walls were added to the system.


	param (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of parameter to be accessed. options are “rsq” (squared radius of cylinder wall), “origin” (origin of cylinder wall), “orientation” (orientation of cylinder wall),
and “inside” (confinement condition associated with cylinder wall).






	Returns

	Value of queried parameter.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_cylinder_wall(radius = 1.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);
rsq = ext_wall.get_cylinder_wall_param(index = 0, param = "rsq");










	
get_num_cylinder_walls()

	Get the current number of cylinder walls in the simulation.


	Returns

	The current number of cylinder walls in the simulation.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_cylinder_wall(radius = 1.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);
num_cyl_walls = ext_wall.get_num_cylinder_walls();










	
get_num_plane_walls()

	Get the current number of plane walls in the simulation.


	Returns

	The current number of plane walls in the simulation.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_plane_wall(normal = [0, 0, 1], origin = [0, 0, 0]);
num_plane_walls = ext_wall.get_num_plane_walls();










	
get_num_sphere_walls()

	Get the current number of sphere walls in the simulation.

Returns: the current number of sphere walls in the simulation

Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
num_sph_walls = ext_wall.get_num_sphere_walls();










	
get_plane_wall_param(index, param)

	Access a parameter associated with a particular plane wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the plane wall to be accessed. indices begin at 0 in the order the plane walls were added to the system.


	param (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of parameter to be accessed. options are “normal” (vector normal to the plane wall), and “origin” (point on the plane wall)






	Returns

	Value of queried parameter.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_plane_wall(normal = [0, 0, 1], origin = [0, 0, 0]);
n = ext_wall.get_plane_wall_param(index = 0, param = "normal");










	
get_sphere_wall_param(index, param)

	Access a parameter associated with a particular sphere wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the sphere wall to be accessed. indices begin at 0 in the order the sphere walls were added to the system.


	param (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of parameter to be accessed. options are “rsq” (squared radius of sphere wall), “origin” (origin of sphere wall), and “inside” (confinement condition associated with sphere wall)






	Returns

	Value of queried parameter.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
rsq = ext_wall.get_sphere_wall_param(index = 0, param = "rsq");










	
get_volume()

	Get the current volume associated with the intersection of all walls in the system.

If this quantity has not previously been set by the user, this returns a meaningless value.


	Returns

	The current volume associated with the intersection of all walls in the system.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.set_volume(4./3.*np.pi);
run(100)
curr_vol = ext_wall.get_volume();










	
remove_cylinder_wall(index)

	Remove a particular cylinder wall from the simulation.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the cylinder wall to be removed. indices begin at 0 in the order the cylinder walls were added to the system.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_cylinder_wall(radius = 1.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);
ext_wall.remove_cylinder_wall(index = 0);










	
remove_plane_wall(index)

	Remove a particular plane wall from the simulation.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the plane wall to be removed. indices begin at 0 in the order the plane walls were added to the system.





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_plane_wall(normal = [0, 0, 1], origin = [0, 0, 0]);
ext_wall.remove_plane_wall(index = 0);










	
remove_sphere_wall(index)

	Remove a particular sphere wall from the simulation.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the sphere wall to be removed. indices begin at 0 in the order the sphere walls were added to the system.





Quick Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.remove_sphere_wall(index = 0);










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_curr_box(Lx=None, Ly=None, Lz=None, xy=None, xz=None, yz=None)

	Set the simulation box that the wall class is currently storing.

You may want to set this independently so that you can cleverly control whether or not the walls actually scale in case you manually resize your simulation box.
The walls scale automatically when they get the signal that the global box, associated with the system definition, has scaled. They do so, however, with a scale factor associated with
the ratio of the volume of the global box to the volume of the box that the walls class is currently storing. (After the scaling the box that the walls class is currently storing is updated appropriately.)
If you want to change the simulation box WITHOUT scaling the walls, then, you must first update the simulation box that the walls class is storing, THEN update the global box associated with the system definition.

Example:

init_box = hoomd.data.boxdim(L=10, dimensions=3);
snap = hoomd.data.make_snapshot(N=1, box=init_box, particle_types=['A']);
system = hoomd.init.read_snapshot(snap);
system.particles[0].position = [0,0,0];
system.particles[0].type = 'A';
mc = hpmc.integrate.sphere(seed = 415236);
mc.shape_param.set('A', diameter = 2.0);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 3.0, origin = [0, 0, 0], inside = True);
ext_wall.set_curr_box(Lx=2.0*init_box.Lx, Ly=2.0*init_box.Ly, Lz=2.0*init_box.Lz, xy=init_box.xy, xz=init_box.xz, yz=init_box.yz);
system.sysdef.getParticleData().setGlobalBox(ext_wall.get_curr_box()._getBoxDim())










	
set_cylinder_wall(index, radius, origin, orientation, inside=True)

	Change the parameters associated with a particular cylinder wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the cylinder wall to be modified. indices begin at 0 in the order the cylinder walls were added to the system.


	radius (float [https://docs.python.org/3/library/functions.html#float]) – New radius of cylindrical wall


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – New origin (center) of cylindrical wall


	orientation (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – New vector that defines the direction of the long axis of the cylinder. will be normalized automatically by hpmc.


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – New confinement condition. When True, then particles are CONFINED by the wall if they exist entirely inside the cylinder (in the portion of connected space that contains the origin).
When False, then particles are CONFINED by the wall if they exist entirely outside the cylinder (in the portion of connected space that does not contain the origin). DEFAULTS to True.








Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_cylinder_wall(radius = 1.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);
ext_wall.set_cylinder_wall(index = 0, radius = 3.0, origin = [0, 0, 0], orientation = [0, 0, 1], inside = True);










	
set_plane_wall(index, normal, origin)

	Change the parameters associated with a particular plane wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the plane wall to be modified. indices begin at 0 in the order the plane walls were added to the system.


	normal (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – new vector normal to the plane. this, in combination with a point on the plane, defines the plane entirely. It will be normalized automatically by hpmc.
The direction of the normal vector defines the confinement condition associated with the plane wall. If every part of a particle exists in the halfspace into which the normal points, then that particle is CONFINED by the plane wall.


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – new point on the plane wall. this, in combination with the normal vector, defines the plane entirely.








Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_plane_wall(normal = [0, 0, 1], origin = [0, 0, 0]);
ext_wall.set_plane_wall(index = 0, normal = [0, 0, 1], origin = [0, 0, 1]);










	
set_sphere_wall(index, radius, origin, inside=True)

	Change the parameters associated with a particular sphere wall.


	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – index of the sphere wall to be modified. indices begin at 0 in the order the sphere walls were added to the system.


	radius (float [https://docs.python.org/3/library/functions.html#float]) – New radius of spherical wall


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – New origin (center) of spherical wall.


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – New confinement condition. When True, particles are CONFINED by the wall if they exist entirely inside the sphere (in the portion of connected space that contains the origin).
When False, then particles are CONFINED by the wall if they exist entirely outside the sphere (in the portion of connected space that does not contain the origin).








Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.set_sphere_wall(index = 0, radius = 3.0, origin = [0, 0, 0], inside = True);










	
set_volume(volume)

	Set the volume associated with the intersection of all walls in the system.

This number will subsequently change when the box is resized and walls are scaled appropriately.

Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
ext_wall.set_volume(4./3.*np.pi);
















          

      

      

    

  

    
      
          
            
  
hpmc.integrate

Overview







	hpmc.integrate.convex_polygon

	HPMC integration for convex polygons (2D).



	hpmc.integrate.convex_polyhedron

	HPMC integration for convex polyhedra (3D).



	hpmc.integrate.convex_polyhedron_union

	HPMC integration for unions of convex polyhedra (3D).



	hpmc.integrate.convex_spheropolygon

	HPMC integration for convex spheropolygons (2D).



	hpmc.integrate.convex_spheropolyhedron

	HPMC integration for spheropolyhedra (3D).



	hpmc.integrate.convex_spheropolyhedron_union

	HPMC integration for unions of convex polyhedra (3D).



	hpmc.integrate.ellipsoid

	HPMC integration for ellipsoids (2D/3D).



	hpmc.integrate.faceted_sphere

	HPMC integration for faceted spheres (3D).



	hpmc.integrate.interaction_matrix

	Define pairwise interaction matrix



	hpmc.integrate.mode_hpmc

	Base class HPMC integrator.



	hpmc.integrate.polyhedron

	HPMC integration for general polyhedra (3D).



	hpmc.integrate.simple_polygon

	HPMC integration for simple polygons (2D).



	hpmc.integrate.sphere

	HPMC integration for spheres (2D/3D).



	hpmc.integrate.sphere_union

	HPMC integration for unions of spheres (3D).



	hpmc.integrate.sphinx

	HPMC integration for sphinx particles (3D).






Details


	
class hoomd.hpmc.integrate.convex_polygon(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, restore_state=False)

	HPMC integration for convex polygons (2D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)









Note

For concave polygons, use simple_polygon.



Convex polygon parameters:


	vertices (required) - vertices of the polygon as is a list of (x,y) tuples of numbers (distance units)



	Vertices MUST be specified in a counter-clockwise order.


	The origin MUST be contained within the vertices.


	Points inside the polygon MUST NOT be included.


	The origin centered circle that encloses all vertices should be of minimal size for optimal performance (e.g.
don’t put the origin right next to an edge).









	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Examples:

mc = hpmc.integrate.convex_polygon(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5), (0.5, 0.5), (-0.5, 0.5)]);
print('vertices = ', mc.shape_param['A'].vertices)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'Polygon', 'rounding_radius': 0,
  'vertices': [[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.convex_polyhedron(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', max_verts=None, restore_state=False)

	HPMC integration for convex polyhedra (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – (Override the automatic choice for the number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_verts (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of vertices in a polyhedron. (deprecated in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Convex polyhedron parameters:


	vertices (required) - vertices of the polyhedron as is a list of (x,y,z) tuples of numbers (distance units)



	The origin MUST be contained within the vertices.


	The origin centered circle that encloses all vertices should be of minimal size for optimal performance (e.g.
don’t put the origin right next to a face).









	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Example:

mc = hpmc.integrate.convex_polyhedron(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', vertices=[(0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), (-0.5, -0.5, 0.5)]);
print('vertices = ', mc.shape_param['A'].vertices)





Depletants Example:

mc = hpmc.integrate.convex_polyhedron(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=3,depletant_type='B')
mc.shape_param.set('A', vertices=[(0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), (-0.5, -0.5, 0.5)]);
mc.shape_param.set('B', vertices=[(0.05, 0.05, 0.05), (0.05, -0.05, -0.05), (-0.05, 0.05, -0.05), (-0.05, -0.05, 0.05)]);






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'ConvexPolyhedron', 'rounding_radius': 0,
  'vertices': [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5],
               [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.convex_polyhedron_union(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere')

	HPMC integration for unions of convex polyhedra (3D).



Deprecated since version 2.4: Replaced by convex_spheropolyhedron_union. This class stays in place for compatibility with older scripts.







	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_members (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of members in the convex polyhedron union


	capacity (int [https://docs.python.org/3/library/functions.html#int]) – Set to the number of constituent convex polyhedra per leaf node









New in version 2.2.



Convex polyhedron union parameters:


	vertices (required) - list of vertex lists of the polyhedra in particle coordinates.


	centers (required) - list of centers of constituent polyhedra in particle coordinates.


	orientations (required) - list of orientations of constituent polyhedra.


	overlap (default: 1 for all particles) - only check overlap between constituent particles for which overlap [i] & overlap[j] is !=0, where ‘&’ is the bitwise AND operator.


	sweep_radii (default: 0 for all particle) - radii of spheres sweeping out each constituent polyhedron



	
New in version 2.4.












	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking.


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Example:

mc = hpmc.integrate.convex_polyhedron_union(seed=27, d=0.3, a=0.4)
cube_verts = [[-1,-1,-1],[-1,-1,1],[-1,1,1],[-1,1,-1],
             [1,-1,-1],[1,-1,1],[1,1,1],[1,1,-1]]
mc.shape_param.set('A', vertices=[cube_verts, cube_verts],
                        centers=[[-1,0,0],[1,0,0]],orientations=[[1,0,0,0],[1,0,0,0]]);
print('vertices of the first cube = ', mc.shape_param['A'].members[0].vertices)
print('center of the first cube = ', mc.shape_param['A'].centers[0])
print('orientation of the first cube = ', mc.shape_param['A'].orientations[0])










	
class hoomd.hpmc.integrate.convex_spheropolygon(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, restore_state=False)

	HPMC integration for convex spheropolygons (2D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Spheropolygon parameters:


	vertices (required) - vertices of the polygon as is a list of (x,y) tuples of numbers (distance units)



	The origin MUST be contained within the shape.


	The origin centered circle that encloses all vertices should be of minimal size for optimal performance (e.g.
don’t put the origin right next to an edge).









	sweep_radius (default: 0.0) - the radius of the sphere swept around the edges of the polygon (distance units) - optional


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Useful cases:



	A 1-vertex spheropolygon is a disk.


	A 2-vertex spheropolygon is a spherocylinder.








Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Examples:

mc = hpmc.integrate.convex_spheropolygon(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5), (0.5, 0.5), (-0.5, 0.5)], sweep_radius=0.1, ignore_statistics=False);
mc.shape_param.set('A', vertices=[(0,0)], sweep_radius=0.5, ignore_statistics=True);
print('vertices = ', mc.shape_param['A'].vertices)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'Polygon', 'rounding_radius': 0.1,
  'vertices': [[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.convex_spheropolyhedron(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', max_verts=None, restore_state=False)

	HPMC integration for spheropolyhedra (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_verts (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of vertices in a polyhedron. (deprecated in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








A spheropolyhedron can also represent spheres (0 or 1 vertices), and spherocylinders (2 vertices).

Spheropolyhedron parameters:


	vertices (required) - vertices of the polyhedron as is a list of (x,y,z) tuples of numbers (distance units)



	The origin MUST be contained within the vertices.


	The origin centered sphere that encloses all vertices should be of minimal size for optimal performance (e.g.
don’t put the origin right next to a face).


	A sphere can be represented by specifying zero vertices (i.e. vertices=[]) and a non-zero radius R


	Two vertices and a non-zero radius R define a prolate spherocylinder.









	sweep_radius (default: 0.0) - the radius of the sphere swept around the edges of the polygon (distance units) - optional


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Example:

mc = hpmc.integrate.convex_spheropolyhedron(seed=415236, d=0.3, a=0.4)
mc.shape_param['tetrahedron'].set(vertices=[(0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), (-0.5, -0.5, 0.5)]);
print('vertices = ', mc.shape_param['A'].vertices)
mc.shape_param['SphericalDepletant'].set(vertices=[], sweep_radius=0.1, ignore_statistics=True);





Depletants example:

mc = hpmc.integrate.convex_spheropolyhedron(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nR=3,depletant_type='SphericalDepletant')
mc.shape_param['tetrahedron'].set(vertices=[(0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), (-0.5, -0.5, 0.5)]);
mc.shape_param['SphericalDepletant'].set(vertices=[], sweep_radius=0.1);






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'ConvexPolyhedron', 'rounding_radius': 0.1,
  'vertices': [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5],
               [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.convex_spheropolyhedron_union(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere')

	HPMC integration for unions of convex polyhedra (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_members (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of members in the convex polyhedron union


	capacity (int [https://docs.python.org/3/library/functions.html#int]) – Set to the number of constituent convex polyhedra per leaf node









New in version 2.2.



Convex polyhedron union parameters:


	vertices (required) - list of vertex lists of the polyhedra in particle coordinates.


	centers (required) - list of centers of constituent polyhedra in particle coordinates.


	orientations (required) - list of orientations of constituent polyhedra.


	overlap (default: 1 for all particles) - only check overlap between constituent particles for which overlap [i] & overlap[j] is !=0, where ‘&’ is the bitwise AND operator.


	sweep_radii (default: 0 for all particle) - radii of spheres sweeping out each constituent polyhedron



	
New in version 2.4.












	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking.


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Example:

mc = hpmc.integrate.convex_spheropolyhedron_union(seed=27, d=0.3, a=0.4)
cube_verts = [[-1,-1,-1],[-1,-1,1],[-1,1,1],[-1,1,-1],
             [1,-1,-1],[1,-1,1],[1,1,1],[1,1,-1]]
mc.shape_param.set('A', vertices=[cube_verts, cube_verts],
                        centers=[[-1,0,0],[1,0,0]],orientations=[[1,0,0,0],[1,0,0,0]]);
print('vertices of the first cube = ', mc.shape_param['A'].members[0].vertices)
print('center of the first cube = ', mc.shape_param['A'].centers[0])
print('orientation of the first cube = ', mc.shape_param['A'].orientations[0])










	
class hoomd.hpmc.integrate.ellipsoid(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for ellipsoids (2D/3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Ellipsoid parameters:


	a (required) - principle axis a of the ellipsoid (radius in the x direction) (distance units)


	b (required) - principle axis b of the ellipsoid (radius in the y direction) (distance units)


	c (required) - principle axis c of the ellipsoid (radius in the z direction) (distance units)


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Example:

mc = hpmc.integrate.ellipsoid(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', a=0.5, b=0.25, c=0.125);
print('ellipsoids parameters (a,b,c) = ', mc.shape_param['A'].a, mc.shape_param['A'].b, mc.shape_param['A'].c)





Depletants Example:

mc = hpmc.integrate.ellipsoid(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=50,depletant_type='B')
mc.shape_param.set('A', a=0.5, b=0.25, c=0.125);
mc.shape_param.set('B', a=0.05, b=0.05, c=0.05);






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'Ellipsoid', 'a': 1.0, 'b': 1.5, 'c': 1}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.faceted_ellipsoid(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for faceted ellipsoids (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








A faceted ellipsoid is an ellipsoid intersected with a convex polyhedron defined through
halfspaces. The equation defining each halfspace is given by:


\[n_i\cdot r + b_i \le 0\]

where \(n_i\) is the face normal, and \(b_i\) is  the offset.


Warning

The origin must be chosen so as to lie inside the shape, or the overlap check will not work.
This condition is not checked.



Faceted ellipsoid parameters:


	normals (required) - list of (x,y,z) tuples defining the facet normals (distance units)


	offsets (required) - list of offsets (distance unit^2)


	a (required) - first half axis of ellipsoid


	b (required) - second half axis of ellipsoid


	c (required) - third half axis of ellipsoid


	vertices (required) - list of vertices for intersection polyhedron


	origin (required) - origin vector


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

Planes must not be coplanar.




Note

The half-space intersection of the normals has to match the convex polyhedron defined by
the vertices (if non-empty), currently the half-space intersection is not calculated automatically.
For simple intersections with planes that do not intersect within the sphere, the vertices
list can be left empty.



Example:

mc = hpmc.integrate.faceted_ellipsoid(seed=415236, d=0.3, a=0.4)

# half-space intersection
slab_normals = [(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1)]
slab_offsets = [-0.1,-1,-.5,-.5,-.5,-.5)

# polyedron vertices
slab_verts = [[-.1,-.5,-.5],[-.1,-.5,.5],[-.1,.5,.5],[-.1,.5,-.5], [1,-.5,-.5],[1,-.5,.5],[1,.5,.5],[1,.5,-.5]]

mc.shape_param.set('A', normals=slab_normals, offsets=slab_offsets, vertices=slab_verts,a=1.0, b=0.5, c=0.5);
print('a = {}, b = {}, c = {}', mc.shape_param['A'].a,mc.shape_param['A'].b,mc.shape_param['A'].c)





Depletants Example:

mc = hpmc.integrate.faceted_ellipsoid(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=3,depletant_type='B')
mc.shape_param.set('A', normals=[(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1)],a=1.0, b=0.5, c=0.25);
# depletant sphere
mc.shape_param.set('B', normals=[],a=0.1,b=0.1,c=0.1);










	
class hoomd.hpmc.integrate.faceted_ellipsoid_union(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere')

	HPMC integration for unions of faceted ellipsoids (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_members (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of members in the convex polyhedron union


	capacity (int [https://docs.python.org/3/library/functions.html#int]) – Set to the number of constituent convex polyhedra per leaf node









New in version 2.5.



See faceted_ellipsoid for a detailed explanation of the constituent particle parameters.

Faceted ellipsiod union parameters:


	normals (required) - list of list of (x,y,z) tuples defining the facet normals (distance units)


	offsets (required) - list of list of offsets (distance unit^2)


	axes (required) - list of half axes, tuple of three per constituent ellipsoid


	vertices (required) - list of list list of vertices for intersection polyhedron


	origin (required) - list of origin vectors


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking.


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Example:

mc = hpmc.integrate.faceted_ellipsoid_union(seed=27, d=0.3, a=0.4)

# make a prolate Janus ellipsoid
# cut away -x halfspace
normals = [(-1,0,0)]
offsets = [0]

mc.shape_param.set('A', normals=[normals, normals],
                        offsets=[offsets, offsets],
                        vertices=[[], []],
                        axes=[(.5,.5,2),(.5,.5,2)],
                        centers=[[0,0,0],[0,0,0]],
                        orientations=[[1,0,0,0],[0,0,0,-1]]);

print('offsets of the first faceted ellipsoid = ', mc.shape_param['A'].members[0].normals)
print('normals of the first faceted ellispoid = ', mc.shape_param['A'].members[0].offsets)
print('vertices of the first faceted ellipsoid = ', mc.shape_param['A'].members[0].vertices)










	
class hoomd.hpmc.integrate.faceted_sphere(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for faceted spheres (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








A faceted sphere is a sphere intersected with halfspaces. The equation defining each halfspace is given by:


\[n_i\cdot r + b_i \le 0\]

where \(n_i\) is the face normal, and \(b_i\) is  the offset.


Warning

The origin must be chosen so as to lie inside the shape, or the overlap check will not work.
This condition is not checked.



Faceted sphere parameters:


	normals (required) - list of (x,y,z) tuples defining the facet normals (distance units)


	offsets (required) - list of offsets (distance unit^2)


	diameter (required) - diameter of sphere


	vertices (required) - list of vertices for intersection polyhedron


	origin (required) - origin vector


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

Planes must not be coplanar.




Note

The half-space intersection of the normals has to match the convex polyhedron defined by
the vertices (if non-empty), currently the half-space intersection is not calculated automatically.
For simple intersections with planes that do not intersect within the sphere, the vertices
list can be left empty.




	Example::

	# half-space intersection
slab_normals = [(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1)]
slab_offsets = [-0.1,-1,-.5,-.5,-.5,-.5)

# polyedron vertices
slab_verts = [[-.1,-.5,-.5],[-.1,-.5,.5],[-.1,.5,.5],[-.1,.5,-.5], [.5,-.5,-.5],[.5,-.5,.5],[.5,.5,.5],[.5,.5,-.5]]

mc = hpmc.integrate.faceted_sphere(seed=415236, d=0.3, a=0.4)
mc.shape_param.set(‘A’, normals=slab_normals,offsets=slab_offsets, vertices=slab_verts,diameter=1.0);
print(‘diameter = ‘, mc.shape_param[‘A’].diameter)





Depletants Example:

mc = hpmc.integrate.faceted_sphere(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=3,depletant_type='B')
mc.shape_param.set('A', normals=[(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1)],diameter=1.0);
mc.shape_param.set('B', normals=[],diameter=0.1);










	
class hoomd.hpmc.integrate.interaction_matrix

	Define pairwise interaction matrix

All shapes use interaction_matrix to define the interaction matrix between different
pairs of particles indexed by type. The set of pair coefficients is a symmetric
matrix defined over all possible pairs of particle types.

By default, all elements of the interaction matrix are 1, that means that overlaps
are checked between all pairs of types. To disable overlap checking for a specific
type pair, set the coefficient for that pair to 0.

Access the interaction matrix with a saved integrator object like so:

from hoomd import hpmc

mc = hpmc.integrate.some_shape(arguments...)
mv.overlap_checks.set('A', 'A', enable=False)
mc.overlap_checks.set('A', 'B', enable=True)
mc.overlap_checks.set('B', 'B', enable=False)






New in version 2.1.




	
set(a, b, enable)

	Sets parameters for one type pair.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – First particle type in the pair (or a list of type names)


	b (str [https://docs.python.org/3/library/stdtypes.html#str]) – Second particle type in the pair (or a list of type names)


	enable – Set to True to enable overlap checks for this pair, False otherwise








By default, all interaction matrix elements are set to ‘True’.

It is not an error, to specify matrix elements for particle types that do not exist in the simulation.

There is no need to specify matrix elements for both pairs ‘A’, ‘B’ and ‘B’, ‘A’. Specifying
only one is sufficient.

To set the same elements between many particle types, provide a list of type names instead of a single
one. All pairs between the two lists will be set to the same parameters.

Examples:

mc.overlap_checks.set('A', 'A', False);
mc.overlap_checks.set('B', 'B', False);
mc.overlap_checks.set('A', 'B', True);
mc.overlap_checks.set(['A', 'B', 'C', 'D'], 'F', True);
mc.overlap_checks.set(['A', 'B', 'C', 'D'], ['A', 'B', 'C', 'D'], False);














	
class hoomd.hpmc.integrate.mode_hpmc(implicit, depletant_mode=None)

	Base class HPMC integrator.

mode_hpmc is the base class for all HPMC integrators. It provides common interface elements.
Users should not instantiate this class directly. Methods documented here are available to all hpmc
integrators.

State data

HPMC integrators can save and restore the following state information to gsd files:



	Maximum trial move displacement d


	Maximum trial rotation move a


	Shape parameters for all types.







State data are not written by default. You must explicitly request that state data for an mc integrator
is written to a gsd file (see hoomd.dump.gsd.dump_state()).

mc = hoomd.hpmc.shape(...)
gsd = hoomd.dump.gsd(...)
gsd.dump_state(mc)





State data are not restored by default. You must explicitly request that state data be restored when initializing
the integrator.

init.read_gsd(...)
mc = hoomd.hpmc.shape(..., restore_state=True)





See the State data section of the HOOMD GSD schema [http://gsd.readthedocs.io/en/latest/schema-hoomd.html] for
details on GSD data chunk names and how the data are stored.

Depletants

HPMC supports integration with depletants. An ideal gas of depletants is generated ‘on-the-fly’ and
and used in the Metropolis acceptance criterion for the ‘colloid’ particles. Depletants
are of arbitrary shape, however they are assumed to be ‘hard’ only with respect
to the colloids, and mutually interpenetrable. The main idea is described in
See J. Glaser et. al. 2015 [http://dx.doi.org/10.1063/1.4935175] .

As of version 2.2, hoomd.hpmc supports a new acceptance rule for depletants which is enabled
with the depletant_mode=’overlap_regions’ argument. The new mode results in
free diffusion of colloids that do not share any overlap volume with other colloids. This
speeds up equilibration of dilute systems of colloids in a dense depletant bath. Both modes
yield the same equilibrium statistics, but different dynamics (Glaser, to be published).


	
count_overlaps()

	Count the number of overlaps.


	Returns

	The number of overlaps in the current system configuration





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param.set(....);
run(100)
num_overlaps = mc.count_overlaps();










	
get_a(type=None)

	Get the maximum trial rotation.


	Parameters

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type name to query.



	Returns

	The current value of the ‘a’ parameter of the integrator.










	
get_configurational_bias_ratio()

	Get the average ratio of configurational bias attempts to depletant insertion moves.

Only supported with depletant_mode==’circumsphere’.


	Returns

	The average configurational bias ratio during the last hoomd.run().





Example:

mc = hpmc.integrate.shape(..,implicit=True);
mc.shape_param.set(....);
run(100)
cb_ratio = mc.get_configurational_bias_ratio();










	
get_counters()

	Get all trial move counters.


	Returns

	A dictionary containing all trial moves counted during the last hoomd.run().





The dictionary contains the entries:


	translate_accept_count - count of the number of accepted translate moves


	translate_reject_count - count of the number of rejected translate moves


	rotate_accept_count - count of the number of accepted rotate moves


	rotate_reject_count - count of the number of rejected rotate moves


	overlap_checks - estimate of the number of overlap checks performed


	translate_acceptance - Average translate acceptance ratio over the run


	rotate_acceptance - Average rotate acceptance ratio over the run


	move_count - Count of the number of trial moves during the run









	
get_d(type=None)

	Get the maximum trial displacement.


	Parameters

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type name to query.



	Returns

	The current value of the ‘d’ parameter of the integrator.










	
get_depletant_type()

	Get the depletant type


	Returns

	The type of particle used as depletant (the ‘depletant_type’ argument of the integrator).










	
get_move_ratio()

	Get the current probability of attempting translation moves.

Returns: The current value of the ‘move_ratio’ parameter of the integrator.






	
get_mps()

	Get the number of trial moves per second.


	Returns

	The number of trial moves per second performed during the last hoomd.run().










	
get_nR()

	Get depletant density


	Returns

	The current value of the ‘nR’ parameter of the integrator.










	
get_nselect()

	Get nselect parameter.


	Returns

	The current value of the ‘nselect’ parameter of the integrator.










	
get_ntrial()

	Get ntrial parameter.


	Returns

	The current value of the ‘ntrial’ parameter of the integrator.










	
get_rotate_acceptance()

	Get the average acceptance ratio for rotate moves.


	Returns

	The average rotate accept ratio during the last hoomd.run().





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param.set(....);
run(100)
t_accept = mc.get_rotate_acceptance();










	
get_translate_acceptance()

	Get the average acceptance ratio for translate moves.


	Returns

	The average translate accept ratio during the last hoomd.run().





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param.set(....);
run(100)
t_accept = mc.get_translate_acceptance();










	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
map_overlaps()

	Build an overlap map of the system


	Returns

	List of tuples. True/false value of the i,j entry indicates overlap/non-overlap of the ith and jth particles (by tag)






Note

map_overlaps() does not support MPI parallel simulations.



Example

mc = hpmc.integrate.shape(…)
mc.shape_param.set(…)
overlap_map = np.asarray(mc.map_overlaps())






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(d=None, a=None, move_ratio=None, nselect=None, nR=None, depletant_type=None, ntrial=None, deterministic=None)

	Changes parameters of an existing integration mode.


	Parameters

	
	d (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – (if set) New value for the move ratio.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – (if set) New value for the number of particles to select for trial moves in one cell.


	nR (int [https://docs.python.org/3/library/functions.html#int]) – (if set) Implicit depletants only: Number density of implicit depletants in free volume.


	depletant_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Implicit depletants only: Particle type to use as implicit depletant.


	ntrial (int [https://docs.python.org/3/library/functions.html#int]) – (if set) Implicit depletants only: Number of re-insertion attempts per overlapping depletant.
(Only supported with depletant_mode=’circumsphere’)


	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Make HPMC integration deterministic on the GPU by sorting the cell list.









Note

Simulations are only deterministic with respect to the same execution configuration (CPU or GPU) and
number of MPI ranks. Simulation output will not be identical if either of these is changed.








	
setup_pos_writer(pos, colors={})

	Set pos_writer definitions for specified shape parameters.


	Parameters

	
	pos (hoomd.deprecated.dump.pos) – pos writer to setup


	colors (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of type name to color mappings








setup_pos_writer() uses the shape_param settings to specify the shape definitions (via set_def)
to the provided pos file writer. This overrides any previous values specified to
hoomd.deprecated.dump.pos.set_def().

colors allows you to set per-type colors for particles. Specify colors as strings in the injavis format. When
colors is not specified for a type, all colors default to 005984FF.

Examples:

mc = hpmc.integrate.shape(...);
mc.shape_param.set(....);
pos = pos_writer.dumpy.pos("dump.pos", period=100);
mc.setup_pos_writer(pos, colors=dict(A='005984FF'));










	
test_overlap(type_i, type_j, rij, qi, qj, use_images=True, exclude_self=False)

	Test overlap between two particles.


	Parameters

	
	type_i (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of first particle


	type_j (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of second particle


	rij (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Separation vector rj-ri between the particle centers


	qi (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Orientation quaternion of first particle


	qj (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Orientation quaternion of second particle


	use_images (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, check for overlap between the periodic images of the particles by adding
the image vector to the separation vector


	exclude_self (bool [https://docs.python.org/3/library/functions.html#bool]) – If both use_images and exclude_self are true, exclude the primary image








For two-dimensional shapes, pass the third dimension of rij as zero.


	Returns

	True if the particles overlap.














	
class hoomd.hpmc.integrate.polyhedron(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for general polyhedra (3D).

This shape uses an internal OBB tree for fast collision queries.
Depending on the number of constituent spheres in the tree, different values of the number of
spheres per leaf node may yield different optimal performance.
The capacity of leaf nodes is configurable.

Only triangle meshes and spheres are supported. The mesh must be free of self-intersections.


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Polyhedron parameters:


	vertices (required) - vertices of the polyhedron as is a list of (x,y,z) tuples of numbers (distance units)



	The origin MUST strictly be contained in the generally nonconvex volume defined by the vertices and faces


	The (0,0,0) centered sphere that encloses all vertices should be of minimal size for optimal performance (e.g.
don’t translate the shape such that (0,0,0) right next to a face).









	faces (required) - a list of vertex indices for every face



	For visualization purposes, the faces MUST be defined with a counterclockwise winding order to produce an outward normal.









	sweep_radius (default: 0.0) - rounding radius applied to polyhedron


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.












	capacity (default: 4) - set to the maximum number of particles per leaf node for better performance



	
New in version 2.2.












	origin (default: (0,0,0)) - a point strictly inside the shape, needed for correctness of overlap checks



	
New in version 2.2.












	hull_only (default: True) - if True, only consider intersections between hull polygons



	
New in version 2.2.















Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Example:

mc = hpmc.integrate.polyhedron(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', vertices=[(-0.5, -0.5, -0.5), (-0.5, -0.5, 0.5), (-0.5, 0.5, -0.5), (-0.5, 0.5, 0.5), \
         (0.5, -0.5, -0.5), (0.5, -0.5, 0.5), (0.5, 0.5, -0.5), (0.5, 0.5, 0.5)],\
faces = [[0, 2, 6], [6, 4, 0], [5, 0, 4], [5,1,0], [5,4,6], [5,6,7], [3,2,0], [3,0,1], [3,6,2], \
         [3,7,6], [3,1,5], [3,5,7]]
print('vertices = ', mc.shape_param['A'].vertices)
print('faces = ', mc.shape_param['A'].faces)





Depletants Example:

mc = hpmc.integrate.polyhedron(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_param(nselect=1,nR=3,depletant_type='B')
cube_verts = [(-0.5, -0.5, -0.5), (-0.5, -0.5, 0.5), (-0.5, 0.5, -0.5), (-0.5, 0.5, 0.5), \
             (0.5, -0.5, -0.5), (0.5, -0.5, 0.5), (0.5, 0.5, -0.5), (0.5, 0.5, 0.5)];
cube_faces = [[0, 2, 6], [6, 4, 0], [5, 0, 4], [5,1,0], [5,4,6], [5,6,7], [3,2,0], [3,0,1], [3,6,2], \
             [3,7,6], [3,1,5], [3,5,7]]
tetra_verts = [(0.5, 0.5, 0.5), (0.5, -0.5, -0.5), (-0.5, 0.5, -0.5), (-0.5, -0.5, 0.5)];
tetra_faces = [[0, 1, 2], [3, 0, 2], [3, 2, 1], [3,1,0]];
mc.shape_param.set('A', vertices = cube_verts, faces = cube_faces);
mc.shape_param.set('B', vertices = tetra_verts, faces = tetra_faces, origin = (0,0,0));






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'Mesh', 'vertices': [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5], [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]],
  'indices': [[0, 1, 2], [0, 3, 1], [0, 2, 3], [1, 3, 2]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.simple_polygon(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, restore_state=False)

	HPMC integration for simple polygons (2D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)









Note

For simple polygons that are not concave, use convex_polygon, it will execute much faster than
simple_polygon.



Simple polygon parameters:


	vertices (required) - vertices of the polygon as is a list of (x,y) tuples of numbers (distance units)



	Vertices MUST be specified in a counter-clockwise order.


	The polygon may be concave, but edges must not cross.


	The origin doesn’t necessarily need to be inside the shape.


	The origin centered circle that encloses all vertices should be of minimal size for optimal performance.









	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.















Warning

HPMC does not check that all requirements are met. Undefined behavior will result if they are
violated.



Examples:

mc = hpmc.integrate.simple_polygon(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', vertices=[(0, 0.5), (-0.5, -0.5), (0, 0), (0.5, -0.5)]);
print('vertices = ', mc.shape_param['A'].vertices)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> mc.get_type_shapes()
[{'type': 'Polygon', 'rounding_radius': 0,
  'vertices': [[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.sphere(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for spheres (2D/3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float, only with orientable=True) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type. (added in version 2.3)


	move_ratio (float, only used with orientable=True) – Ratio of translation moves to rotation moves. (added in version 2.3)


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Hard particle Monte Carlo integration method for spheres.

Sphere parameters:


	diameter (required) - diameter of the sphere (distance units)


	orientable (default: False) - set to True for spheres with orientation (added in version 2.3)


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Examples:

mc = hpmc.integrate.sphere(seed=415236, d=0.3)
mc.shape_param.set('A', diameter=1.0)
mc.shape_param.set('B', diameter=2.0)
mc.shape_param.set('C', diameter=1.0, orientable=True)
print('diameter = ', mc.shape_param['A'].diameter)





Depletants Example:

mc = hpmc.integrate.sphere(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=8,nR=3,depletant_type='B')
mc.shape_param.set('A', diameter=1.0)
mc.shape_param.set('B', diameter=.1)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Examples

The types will be ‘Sphere’ regardless of dimensionality.

>>> mc.get_type_shapes()
[{'type': 'Sphere', 'diameter': 1}, {'type': 'Sphere', 'diameter': 2}]






	Returns

	A list of dictionaries, one for each particle type in the system.














	
class hoomd.hpmc.integrate.sphere_union(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', max_members=None, restore_state=False)

	HPMC integration for unions of spheres (3D).

This shape uses an internal OBB tree for fast collision queries.
Depending on the number of constituent spheres in the tree, different values of the number of
spheres per leaf node may yield different optimal performance.
The capacity of leaf nodes is configurable.


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	max_members (int [https://docs.python.org/3/library/functions.html#int]) – Set the maximum number of members in the sphere union
* .. deprecated:: 2.2


	capacity (int [https://docs.python.org/3/library/functions.html#int]) – Set to the number of constituent spheres per leaf node. (added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Sphere union parameters:


	diameters (required) - list of diameters of the spheres (distance units).


	centers (required) - list of centers of constituent spheres in particle coordinates.


	overlap (default: 1 for all spheres) - only check overlap between constituent particles for which overlap [i] & overlap[j] is !=0, where ‘&’ is the bitwise AND operator.



	
New in version 2.1.












	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking.


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.












	
	capacity (default: 4) - set to the maximum number of particles per leaf node for better performance

	
	
New in version 2.2.















Example:

mc = hpmc.integrate.sphere_union(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', diameters=[1.0, 1.0], centers=[(-0.25, 0.0, 0.0), (0.25, 0.0, 0.0)]);
print('diameter of the first sphere = ', mc.shape_param['A'].members[0].diameter)
print('center of the first sphere = ', mc.shape_param['A'].centers[0])





Depletants Example:

mc = hpmc.integrate.sphere_union(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=50,depletant_type='B')
mc.shape_param.set('A', diameters=[1.0, 1.0], centers=[(-0.25, 0.0, 0.0), (0.25, 0.0, 0.0)]);
mc.shape_param.set('B', diameters=[0.05], centers=[(0.0, 0.0, 0.0)]);










	
class hoomd.hpmc.integrate.sphinx(seed, d=0.1, a=0.1, move_ratio=0.5, nselect=4, implicit=False, depletant_mode='circumsphere', restore_state=False)

	HPMC integration for sphinx particles (3D).


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed.


	d (float [https://docs.python.org/3/library/functions.html#float]) – Maximum move displacement, Scalar to set for all types, or a dict containing {type:size} to set by type.


	a (float [https://docs.python.org/3/library/functions.html#float]) – Maximum rotation move, Scalar to set for all types, or a dict containing {type:size} to set by type.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of translation moves to rotation moves.


	nselect (int [https://docs.python.org/3/library/functions.html#int]) – The number of trial moves to perform in each cell.


	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable implicit depletants.


	depletant_mode (string, only with implicit=True) – Where to place random depletants, either ‘circumsphere’ or ‘overlap_regions’
(added in version 2.2)


	restore_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Restore internal state from initialization file when True. See mode_hpmc
for a description of what state data restored. (added in version 2.2)








Sphinx particles are dimpled spheres (spheres with ‘positive’ and ‘negative’ volumes).

Sphinx parameters:


	diameters - diameters of spheres (positive OR negative real numbers)


	centers - centers of spheres in local coordinate frame


	ignore_statistics (default: False) - set to True to disable ignore for statistics tracking


	ignore_overlaps (default: False) - set to True to disable overlap checks between this and other types with ignore_overlaps=True



	
Deprecated since version 2.1: Replaced by interaction_matrix.














Quick Example:

mc = hpmc.integrate.sphinx(seed=415236, d=0.3, a=0.4)
mc.shape_param.set('A', centers=[(0,0,0),(1,0,0)], diameters=[1,.25])
print('diameters = ', mc.shape_param['A'].diameters)





Depletants Example:

mc = hpmc.integrate.sphinx(seed=415236, d=0.3, a=0.4, implicit=True, depletant_mode='circumsphere')
mc.set_params(nselect=1,nR=3,depletant_type='B')
mc.shape_param.set('A', centers=[(0,0,0),(1,0,0)], diameters=[1,-.25])
mc.shape_param.set('B', centers=[(0,0,0)], diameters=[.15])












          

      

      

    

  

    
      
          
            
  
hpmc.update

Overview







	hpmc.update.boxmc

	Apply box updates to sample isobaric and related ensembles.



	hpmc.update.clusters

	Equilibrate the system according to the geometric cluster algorithm (GCA).



	hpmc.update.muvt

	Insert and remove particles in the muVT ensemble.



	hpmc.update.remove_drift

	Remove the center of mass drift from a system restrained on a lattice.



	hpmc.update.wall

	Apply wall updates with a user-provided python callback.






Details

HPMC updaters.


	
class hoomd.hpmc.update.boxmc(mc, betaP, seed)

	Apply box updates to sample isobaric and related ensembles.


	Parameters

	
	mc (hoomd.hpmc.integrate) – HPMC integrator object for system on which to apply box updates


	betaP (float [https://docs.python.org/3/library/functions.html#float] or hoomd.variant) – \(\frac{p}{k_{\mathrm{B}}T}\). (units of inverse area in 2D or
inverse volume in 3D) Apply your chosen reduced pressure convention
externally.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – random number seed for MC box changes








One or more Monte Carlo move types are applied to evolve the simulation box. By default, no moves are applied.
Activate desired move types using the following methods with a non-zero weight:


	aspect() - box aspect ratio moves


	length() - change box lengths independently


	shear() - shear the box


	volume() - scale the box lengths uniformly


	ln_volume() - scale the box lengths uniformly with logarithmic increments




Pressure inputs to update.boxmc are defined as \(\beta P\). Conversions from a specific definition of reduced
pressure \(P^*\) are left for the user to perform.


Note

All delta and weight values for all move types default to 0.



Example:

mc = hpmc.integrate.sphere(seed=415236, d=0.3)
boxMC = hpmc.update.boxmc(mc, betaP=1.0, seed=9876)
boxMC.set_betap(2.0)
boxMC.ln_volume(delta=0.01, weight=2.0)
boxMC.length(delta=(0.1,0.1,0.1), weight=4.0)
run(30) # perform approximately 10 volume moves and 20 length moves






	
aspect(delta=None, weight=None)

	Enable/disable aspect ratio move and set parameters.


	Parameters

	
	delta (float [https://docs.python.org/3/library/functions.html#float]) – maximum relative change of aspect ratio


	weight (float [https://docs.python.org/3/library/functions.html#float]) – relative weight of this box move type relative to other box move types. 0 disables this
move type.








Rescale aspect ratio along a randomly chosen dimension.


Note

When an argument is None, the value is left unchanged from its current state.



Example:

box_update.aspect(delta=0.01)
box_update.aspect(delta=0.01, weight=2)
box_update.aspect(delta=0.01, weight=0.15)






	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the current values of delta, and weight.










	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Example:

box_updater.set_params(isotropic=True)
run(1e5)
box_updater.disable()
update.box_resize(dLy = 10)
box_updater.enable()
run(1e5)





See updater base class documentation for more information






	
get_aspect_acceptance()

	Get the average acceptance ratio for aspect changing moves.


	Returns

	The average aspect change acceptance for the last run





Example:

mc = hpmc.integrate.shape(..);
mc_shape_param[name].set(....);
box_update = hpmc.update.boxmc(mc, betaP=10, seed=1)
run(100)
a_accept = box_update.get_aspect_acceptance()










	
get_ln_volume_acceptance()

	Get the average acceptance ratio for log(V) changing moves.


	Returns

	The average volume change acceptance for the last run





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param[name].set(....);
box_update = hpmc.update.boxmc(mc, betaP=10, seed=1)
run(100)
v_accept = box_update.get_ln_volume_acceptance()










	
get_shear_acceptance()

	Get the average acceptance ratio for shear changing moves.


	Returns

	The average shear change acceptance for the last run





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param[name].set(....);
box_update = hpmc.update.boxmc(mc, betaP=10, seed=1)
run(100)
s_accept = box_update.get_shear_acceptance()










	
get_volume_acceptance()

	Get the average acceptance ratio for volume changing moves.


	Returns

	The average volume change acceptance for the last run





Example:

mc = hpmc.integrate.shape(..);
mc.shape_param[name].set(....);
box_update = hpmc.update.boxmc(mc, betaP=10, seed=1)
run(100)
v_accept = box_update.get_volume_acceptance()










	
length(delta=None, weight=None)

	Enable/disable isobaric box dimension move and set parameters.


	Parameters

	
	delta (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – maximum change of the box thickness for each pair of parallel planes
connected by the corresponding box edges. I.e. maximum change of
HOOMD-blue box parameters Lx, Ly, Lz. A single float x is equivalent to
(x, x, x).


	weight (float [https://docs.python.org/3/library/functions.html#float]) – relative weight of this box move type relative to other box move types. 0 disables this
move type.








Sample the isobaric distribution of box dimensions by rescaling the plane-to-plane distance of box faces,
Lx, Ly, Lz (see Periodic boundary conditions).


Note

When an argument is None, the value is left unchanged from its current state.



Example:

box_update.length(delta=(0.01, 0.01, 0.0)) # 2D box changes
box_update.length(delta=(0.01, 0.01, 0.01), weight=2)
box_update.length(delta=0.01, weight=2)
box_update.length(delta=(0.10, 0.01, 0.01), weight=0.15) # sample Lx more aggressively






	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the current values of delta and weight.










	
ln_volume(delta=None, weight=None)

	Enable/disable isobaric volume move and set parameters.


	Parameters

	
	delta (float [https://docs.python.org/3/library/functions.html#float]) – maximum change of ln(V) (where V is box area (2D) or volume (3D)).


	weight (float [https://docs.python.org/3/library/functions.html#float]) – relative weight of this box move type relative to other box move types. 0 disables this move type.








Sample the isobaric distribution of box volumes by rescaling the box.


Note

When an argument is None, the value is left unchanged from its current state.



Example:

box_update.ln_volume(delta=0.001)
box_update.ln_volume(delta=0.001, weight=2)
box_update.ln_volume(delta=0.001, weight=0.15)






	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the current values of delta and weight.










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_betap(betaP)

	Update the pressure set point for Metropolis Monte Carlo volume updates.


	Parameters

	betaP (float) or (hoomd.variant) – \(\frac{p}{k_{\mathrm{B}}T}\). (units of inverse area in 2D or
inverse volume in 3D) Apply your chosen reduced pressure convention
externally.










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.






	
shear(delta=None, weight=None, reduce=None)

	Enable/disable box shear moves and set parameters.


	Parameters

	
	delta (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – maximum change of the box tilt factor xy, xz, yz.


	reduce (float [https://docs.python.org/3/library/functions.html#float]) – Maximum number of lattice vectors of shear to allow before applying lattice reduction.
Shear of +/- 0.5 cannot be lattice reduced, so set to a value < 0.5 to disable (default 0)
Note that due to precision errors, lattice reduction may introduce small overlaps which can be
resolved, but which temporarily break detailed balance.


	weight (float [https://docs.python.org/3/library/functions.html#float]) – relative weight of this box move type relative to other box move types. 0 disables this
move type.








Sample the distribution of box shear by adjusting the HOOMD-blue tilt factor parameters xy, xz, and yz.
(see Periodic boundary conditions).


Note

When an argument is None, the value is left unchanged from its current state.



Example:

box_update.shear(delta=(0.01, 0.00, 0.0)) # 2D box changes
box_update.shear(delta=(0.01, 0.01, 0.01), weight=2)
box_update.shear(delta=(0.10, 0.01, 0.01), weight=0.15) # sample xy more aggressively






	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the current values of delta, weight, and reduce.










	
volume(delta=None, weight=None)

	Enable/disable isobaric volume move and set parameters.


	Parameters

	
	delta (float [https://docs.python.org/3/library/functions.html#float]) – maximum change of the box area (2D) or volume (3D).


	weight (float [https://docs.python.org/3/library/functions.html#float]) – relative weight of this box move type relative to other box move types. 0 disables this move type.








Sample the isobaric distribution of box volumes by rescaling the box.


Note

When an argument is None, the value is left unchanged from its current state.



Example:

box_update.volume(delta=0.01)
box_update.volume(delta=0.01, weight=2)
box_update.volume(delta=0.01, weight=0.15)






	Returns

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] with the current values of delta and weight.














	
class hoomd.hpmc.update.clusters(mc, seed, period=1)

	Equilibrate the system according to the geometric cluster algorithm (GCA).

The GCA as described in Liu and Lujten (2004), http://doi.org/10.1103/PhysRevLett.92.035504 is used for hard shape,
patch interactions and depletants.

With depletants, Clusters are defined by a simple distance cut-off criterion. Two particles belong to the same cluster if
the circumspheres of the depletant-excluded volumes overlap.

Supported moves include pivot moves (point reflection), line reflections (pi rotation around an axis), and type swaps.
Only the pivot move is rejection free. With anisotropic particles, the pivot move cannot be used because it would create a
chiral mirror image of the particle, and only line reflections are employed. Line reflections are not rejection free because
of periodic boundary conditions, as discussed in Sinkovits et al. (2012), http://doi.org/10.1063/1.3694271 .

The type swap move works between two types of spherical particles and exchanges their identities.

The clusters updater support TBB execution on multiple CPU cores. See Installing binaries for more information on how
to compile HOOMD with TBB support.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – The seed of the pseudo-random number generator (Needs to be the same across partitions of the same Gibbs ensemble)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of timesteps between histogram evaluations.








Example:

mc = hpmc.integrate.sphere(seed=415236)
hpmc.update.clusters(mc=mc, seed=123)






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
get_pivot_acceptance()

	Get the average acceptance ratio for pivot moves


	Returns

	The average acceptance rate for pivot moves during the last run










	
get_reflection_acceptance()

	Get the average acceptance ratio for reflection moves


	Returns

	The average acceptance rate for reflection moves during the last run










	
get_swap_acceptance()

	Get the average acceptance ratio for swap moves


	Returns

	The average acceptance rate for type swap moves during the last run










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(move_ratio=None, flip_probability=None, swap_move_ratio=None, delta_mu=None, swap_types=None)

	Set options for the clusters moves.


	Parameters

	
	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Set the ratio between pivot and reflection moves (default 0.5)


	flip_probability (float [https://docs.python.org/3/library/functions.html#float]) – Set the probability for transforming an individual cluster (default 0.5)


	swap_move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Set the ratio between type swap moves and geometric moves (default 0.5)


	delta_mu (float [https://docs.python.org/3/library/functions.html#float]) – The chemical potential difference between types to be swapped


	swap_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – A pair of two types whose identities are swapped









Note

When an argument is None, the value is left unchanged from its current state.



Example:

clusters = hpmc.update.clusters(mc, seed=123)
clusters.set_params(move_ratio = 1.0)
clusters.set_params(swap_types=['A','B'], delta_mu = -0.001)










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.hpmc.update.muvt(mc, seed, period=1, transfer_types=None, ngibbs=1)

	Insert and remove particles in the muVT ensemble.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – The seed of the pseudo-random number generator (Needs to be the same across partitions of the same Gibbs ensemble)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of timesteps between histogram evaluations.


	transfer_types (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of type names that are being transferred from/to the reservoir or between boxes (if None, all types)


	ngibbs (int [https://docs.python.org/3/library/functions.html#int]) – The number of partitions to use in Gibbs ensemble simulations (if == 1, perform grand canonical muVT)








The muVT (or grand-canonical) ensemble simulates a system at constant fugacity.

Gibbs ensemble simulations are also supported, where particles and volume are swapped between two or more
boxes.  Every box correspond to one MPI partition, and can therefore run on multiple ranks.
See hoomd.comm and the –nrank command line option for how to split a MPI task into partitions.


Note

Multiple Gibbs ensembles are also supported in a single parallel job, with the ngibbs option
to update.muvt(), where the number of partitions can be a multiple of ngibbs.



Example:

mc = hpmc.integrate.sphere(seed=415236)
update.muvt(mc=mc, period)






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_fugacity(type, fugacity)

	Change muVT fugacities.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type to set parameters for


	fugacity (float [https://docs.python.org/3/library/functions.html#float]) – Fugacity of this particle type (dimension of volume^-1)








Example:

muvt = hpmc.update.muvt(mc, period=10)
muvt.set_fugacity(type='A', fugacity=1.23)
variant = hoomd.variant.linear_interp(points=[(0,1e1), (1e5, 4.56)])
muvt.set_fugacity(type='A', fugacity=variant)










	
set_params(dV=None, move_ratio=None, transfer_ratio=None)

	Set muVT parameters.


	Parameters

	
	dV (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Set volume rescaling factor (dimensionless)


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Set the ratio between volume and exchange/transfer moves (applies to Gibbs ensemble)


	transfer_ratio (float [https://docs.python.org/3/library/functions.html#float]) – (if set) Set the ratio between transfer and exchange moves








Example:

muvt = hpmc.update.muvt(mc, period = 10)
muvt.set_params(dV=0.1)
muvt.set_params(n_trial=2)
muvt.set_params(move_ratio=0.05)










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.hpmc.update.remove_drift(mc, external_lattice, period=1)

	Remove the center of mass drift from a system restrained on a lattice.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	external_lattice (hoomd.hpmc.field.lattice_field) – lattice field where the lattice is defined.


	period (int [https://docs.python.org/3/library/functions.html#int]) – the period to call the updater








The command hpmc.update.remove_drift sets up an updater that removes the center of mass
drift of a system every period timesteps,

Example:

mc = hpmc.integrate.convex_polyhedron(seed=seed);
mc.shape_param.set("A", vertices=verts)
mc.set_params(d=0.005, a=0.005)
lattice = hpmc.compute.lattice_field(mc=mc, position=fcc_lattice, k=1000.0);
remove_drift = update.remove_drift(mc=mc, external_lattice=lattice, period=1000);






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.hpmc.update.wall(mc, walls, py_updater, move_ratio, seed, period=1)

	Apply wall updates with a user-provided python callback.


	Parameters

	
	mc (hoomd.hpmc.integrate) – MC integrator.


	walls (hoomd.hpmc.field.wall) – the wall class instance to be updated


	py_updater (callable) – the python callback that performs the update moves. This must be a python method that is a function of the timestep of the simulation.
It must actually update the hoomd.hpmc.field.wall) managed object.


	move_ratio (float [https://docs.python.org/3/library/functions.html#float]) – the probability with which an update move is attempted


	seed (int [https://docs.python.org/3/library/functions.html#int]) – the seed of the pseudo-random number generator that determines whether or not an update move is attempted


	period (int [https://docs.python.org/3/library/functions.html#int]) – the number of timesteps between update move attempt attempts
Every period steps, a walls update move is tried with probability move_ratio. This update move is provided by the py_updater callback.
Then, update.wall only accepts an update move provided by the python callback if it maintains confinement conditions associated with all walls. Otherwise,
it reverts back to a non-updated copy of the walls.








Once initialized, the update provides the following log quantities that can be logged via hoomd.analyze.log:


	hpmc_wall_acceptance_ratio - the acceptance ratio for wall update moves




Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
def perturb(timestep):
  r = np.sqrt(ext_wall.get_sphere_wall_param(index = 0, param = "rsq"));
  ext_wall.set_sphere_wall(index = 0, radius = 1.5*r, origin = [0, 0, 0], inside = True);
wall_updater = hpmc.update.wall(mc, ext_wall, perturb, move_ratio = 0.5, seed = 27, period = 50);
log = analyze.log(quantities=['hpmc_wall_acceptance_ratio'], period=100, filename='log.dat', overwrite=True);





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
def perturb(timestep):
  r = np.sqrt(ext_wall.get_sphere_wall_param(index = 0, param = "rsq"));
  ext_wall.set_sphere_wall(index = 0, radius = 1.5*r, origin = [0, 0, 0], inside = True);
wall_updater = hpmc.update.wall(mc, ext_wall, perturb, move_ratio = 0.5, seed = 27, period = 50);






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
get_accepted_count(mode=0)

	Get the number of accepted wall update moves.


	Parameters

	mode (int [https://docs.python.org/3/library/functions.html#int]) – specify the type of count to return. If mode!=0, return absolute quantities. If mode=0, return quantities relative to the start of the run.
DEFAULTS to 0.



	Returns

	the number of accepted wall update moves





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
def perturb(timestep):
  r = np.sqrt(ext_wall.get_sphere_wall_param(index = 0, param = "rsq"));
  ext_wall.set_sphere_wall(index = 0, radius = 1.5*r, origin = [0, 0, 0], inside = True);
wall_updater = hpmc.update.wall(mc, ext_wall, perturb, move_ratio = 0.5, seed = 27, period = 50);
run(100);
acc_count = wall_updater.get_accepted_count(mode = 0);










	
get_total_count(mode=0)

	Get the number of attempted wall update moves.


	Parameters

	mode (int [https://docs.python.org/3/library/functions.html#int]) – specify the type of count to return. If mode!=0, return absolute quantities. If mode=0, return quantities relative to the start of the run.
DEFAULTS to 0.



	Returns

	the number of attempted wall update moves





Example:

mc = hpmc.integrate.sphere(seed = 415236);
ext_wall = hpmc.compute.wall(mc);
ext_wall.add_sphere_wall(radius = 1.0, origin = [0, 0, 0], inside = True);
def perturb(timestep):
  r = np.sqrt(ext_wall.get_sphere_wall_param(index = 0, param = "rsq"));
  ext_wall.set_sphere_wall(index = 0, radius = 1.5*r, origin = [0, 0, 0], inside = True);
wall_updater = hpmc.update.wall(mc, ext_wall, perturb, move_ratio = 0.5, seed = 27, period = 50);
run(100);
tot_count = wall_updater.get_total_count(mode = 0);










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.












          

      

      

    

  

    
      
          
            
  
hpmc.util

Overview







	hpmc.util.tune

	Tune mc parameters.



	hpmc.util.tune_npt

	Tune the HPMC hoomd.hpmc.update.boxmc using tune.






Details

HPMC utilities


	
class hoomd.hpmc.util.tune(obj=None, tunables=[], max_val=[], target=0.2, max_scale=2.0, gamma=2.0, type=None, tunable_map=None, *args, **kwargs)

	Tune mc parameters.

hoomd.hpmc.util.tune provides a general tool to observe Monte Carlo move
acceptance rates and adjust the move sizes when called by a user script. By
default, it understands how to read and adjust the trial move domain for
translation moves and rotation moves for an hpmc.integrate instance.
Other move types for integrators or updaters can be handled with a customized
tunable map passed when creating the tuner or in a subclass definition. E.g.
see use an implementation of tune_npt


	Parameters

	
	obj – HPMC Integrator or Updater instance


	tunables (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of strings naming parameters to tune. By default,
allowed element values are ‘d’ and ‘a’.


	max_val (list [https://docs.python.org/3/library/stdtypes.html#list]) – maximum allowed values for corresponding tunables


	target (float [https://docs.python.org/3/library/functions.html#float]) – desired acceptance rate


	max_scale (float [https://docs.python.org/3/library/functions.html#float]) – maximum amount to scale a parameter in a single update


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – damping factor (>= 0.0) to keep from scaling parameter values too fast


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a single hoomd particle type for which to tune move sizes.
If None (default), all types are tuned with the same statistics.


	tunable_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – For each tunable, provide a dictionary of values and methods to be used by the tuner (see below)


	args – Additional positional arguments


	kwargs – Additional keyword arguments








Example:

mc = hpmc.integrate.convex_polyhedron()
mc.set_params(d=0.01, a=0.01, move_ratio=0.5)
tuner = hpmc.util.tune(mc, tunables=['d', 'a'], target=0.2, gamma=0.5)
for i in range(10):
    run(1e4)
    tuner.update()






Note

You should run enough steps to get good statistics for the acceptance ratios. 10,000 trial moves
seems like a good number. E.g. for 10,000 or more particles, tuning after a single timestep should be fine.
For npt moves made once per timestep, tuning as frequently as 1,000 timesteps could get a rough convergence
of acceptance ratios, which is probably good enough since we don’t really know the optimal acceptance ratio, anyway.




Warning

There are some sanity checks that are not performed. For example, you shouldn’t try to scale ‘d’ in a single particle simulation.



Details:

If gamma == 0, each call to update() rescales the current
value of the tunable(s) by the ratio of the observed acceptance rate to the
target value. For gamma > 0, the scale factor is the reciprocal of
a weighted mean of the above ratio with 1, according to


scale = (1.0 + gamma) / (target/acceptance + gamma)




The names in tunables must match one of the keys in tunable_map,
which in turn correspond to the keyword parameters of the MC object being
updated.

tunable_map is a dict [https://docs.python.org/3/library/stdtypes.html#dict] of dict [https://docs.python.org/3/library/stdtypes.html#dict]. The keys of the
outer dict [https://docs.python.org/3/library/stdtypes.html#dict] are strings that can be specified in the tunables
parameter. The value of this outer dict [https://docs.python.org/3/library/stdtypes.html#dict] is another dict [https://docs.python.org/3/library/stdtypes.html#dict]
with the following four keys: ‘get’, ‘acceptance’, ‘set’, and ‘maximum’.

A default tunable_map is provided but can be modified or extended by setting
the following dictionary key/value pairs in the entry for tunable.


	get (callable [https://docs.python.org/3/library/functions.html#callable]): function called by tuner (no arguments) to retrieve current tunable value


	acceptance (callable [https://docs.python.org/3/library/functions.html#callable]): function called by tuner (no arguments) to get relevant acceptance rate


	set (callable [https://docs.python.org/3/library/functions.html#callable]): function to call to set new value (optional). Must take one argument (the new value).
If not provided, obj.set_params(tunable=x) will be called to set the new value.


	maximum (float [https://docs.python.org/3/library/functions.html#float]): maximum value the tuner may set for the tunable parameter




The default tunable_map defines the callable [https://docs.python.org/3/library/functions.html#callable] for ‘set’ to call
hoomd.hpmc.integrate.mode_hpmc.set_params() with tunable={type: newval}
instead of tunable=newval if the type argument is given when creating
the tune object.


	
update()

	Calculate and set tunable parameters using statistics from the run just completed.










	
class hoomd.hpmc.util.tune_npt(obj=None, tunables=[], max_val=[], target=0.2, max_scale=2.0, gamma=2.0, type=None, tunable_map=None, *args, **kwargs)

	Tune the HPMC hoomd.hpmc.update.boxmc using tune.

This is a thin wrapper to tune that simply defines an alternative
tunable_map dictionary. In this case, the obj argument must be an instance of
hoomd.hpmc.update.boxmc. Several tunables are defined.

‘dLx’, ‘dLy’, and ‘dLz’ use the acceptance rate of volume moves to set
delta[0], delta[1], and delta[2], respectively in a call to hoomd.hpmc.update.boxmc.length().

‘dV’ uses the volume acceptance to call hoomd.hpmc.update.boxmc.volume().

‘dlnV’ uses the ln_volume acceptance to call hoomd.hpmc.update.boxmc.ln_volume().

‘dxy’, ‘dxz’, and ‘dyz’ tunables use the shear acceptance to set
delta[0], delta[1], and delta[2], respectively in a call to
hoomd.hpmc.update.boxmc.shear().

Refer to the documentation for hoomd.hpmc.update.boxmc for
information on how these parameters are used, since they are not all
applicable for a given use of boxmc.


Note

A bigger damping factor gamma may be appropriate for tuning box volume
changes because there may be multiple parameters affecting each acceptance rate.



Example:

mc = hpmc.integrate.convex_polyhedron()
mc.set_params(d=0.01, a=0.01, move_ratio=0.5)
updater = hpmc.update.boxmc(mc, betaP=10)
updater.length(0.1, weight=1)
tuner = hpmc.util.tune_npt(updater, tunables=['dLx', 'dLy', 'dLz'], target=0.3, gamma=1.0)
for i in range(10):
    run(1e4)
    tuner.update()






	
update()

	Calculate and set tunable parameters using statistics from the run just completed.












          

      

      

    

  

    
      
          
            
  
md

Details

Molecular Dynamics

Perform Molecular Dynamics simulations with HOOMD-blue.

Stability

hoomd.md is stable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts that follow documented interfaces for functions and classes
will not require any modifications. Maintainer: Joshua A. Anderson

Modules



	md.angle

	md.bond

	md.charge

	md.constrain

	md.dihedral

	md.external

	md.force

	md.improper

	md.integrate

	md.nlist

	md.pair

	md.update

	md.wall

	md.special_pair








          

      

      

    

  

    
      
          
            
  
md.angle

Overview







	md.angle.harmonic

	Harmonic angle potential.



	md.angle.cosinesq

	Cosine squared angle potential.



	md.angle.table

	Tabulated angle potential.






Details

Angle potentials.

Angles add forces between specified triplets of particles and are typically used to
model chemical angles between two bonds.

By themselves, angles that have been specified in an initial configuration do nothing. Only when you
specify an angle force (i.e. angle.harmonic), are forces actually calculated between the
listed particles.


	
class hoomd.md.angle.coeff

	Define angle coefficients.

The coefficients for all angle force are specified using this class. Coefficients are
specified per angle type.

There are two ways to set the coefficients for a particular angle potential.
The first way is to save the angle potential in a variable and call set() directly.
See below for an example of this.

The second method is to build the coeff class first and then assign it to the
angle potential. There are some advantages to this method in that you could specify a
complicated set of angle potential coefficients in a separate python file and import
it into your job script.

Example:

my_coeffs = hoomd.md.angle.coeff();
my_angle_force.angle_coeff.set('polymer', k=330.0, r=0.84)
my_angle_force.angle_coeff.set('backbone', k=330.0, r=0.84)






	
set(type, **coeffs)

	Sets parameters for angle types.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of angle (or a list of type names)


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a angle type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the angle
potential you are setting these coefficients for, see the corresponding documentation.

All possible angle types as defined in the simulation box must be specified before executing run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
angle types that do not exist in the simulation. This can be useful in defining a potential field for many
different types of angles even when some simulations only include a subset.

Examples:

my_angle_force.angle_coeff.set('polymer', k=330.0, r0=0.84)
my_angle_force.angle_coeff.set('backbone', k=1000.0, r0=1.0)
my_angle_force.angle_coeff.set(['angleA','angleB'], k=100, r0=0.0)






Note

Single parameters can be updated. If both k and r0 have already been set for a particle type,
then executing coeff.set('polymer', r0=1.0) will update the value of r0 and leave the other
parameters as they were previously set.












	
class hoomd.md.angle.cosinesq

	Cosine squared angle potential.

The command angle.cosinesq specifies a cosine squared potential energy
between every triplet of particles with an angle specified between them.


\[V(\theta) = \frac{1}{2} k \left( \cos\theta - \cos\theta_0 \right)^2\]

where \(\theta\) is the angle between the triplet of particles.
This angle style is also known as g96, since they were used in the
gromos96 force field. These are also the types of angles used with the
coarse-grained MARTINI force field.

Coefficients:


	\(\theta_0\) - rest angle  t0 (in radians)


	\(k\) - potential constant k (in units of energy)




Coefficients \(k\) and \(\theta_0\) must be set for each type of
angle in the simulation using the method angle_coeff.set().
Note that the value of \(k\) for this angle potential is not comparable to
the value of \(k\) for harmonic angles, as they have different units.

Examples:

cosinesq = angle.cosinesq()
cosinesq.angle_coeff.set('polymer', k=3.0, t0=0.7851)
cosinesq.angle_coeff.set('backbone', k=100.0, t0=1.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.angle.harmonic

	Harmonic angle potential.

The command angle.harmonic specifies a harmonic potential energy between every triplet of particles
with an angle specified between them.


\[V(\theta) = \frac{1}{2} k \left( \theta - \theta_0 \right)^2\]

where \(\theta\) is the angle between the triplet of particles.

Coefficients:


	\(\theta_0\) - rest angle  t0 (in radians)


	\(k\) - potential constant k (in units of energy/radians^2)




Coefficients \(k\) and \(\theta_0\) must be set for each type of angle in the simulation using the
method angle_coeff.set().

Examples:

harmonic = angle.harmonic()
harmonic.angle_coeff.set('polymer', k=3.0, t0=0.7851)
harmonic.angle_coeff.set('backbone', k=100.0, t0=1.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.angle.table(width, name=None)

	Tabulated angle potential.


	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to use to interpolate V and F (see documentation above)


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance








table specifies that a tabulated  angle potential should be added to every bonded triple of particles
in the simulation.

The torque \(T\) is (in units of force * distance) and the potential \(V(\theta)\) is (in energy units):


\[\begin{split}T(\theta)     = & T_{\mathrm{user}}(\theta) \\
V(\theta)     = & V_{\mathrm{user}}(\theta)\end{split}\]

where \(\theta\) is the angle from A-B to B-C in the triple.

\(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}}(\theta)\) are evaluated on width grid points
between \(0\) and \(\pi\). Values are interpolated linearly between grid points.
For correctness, you must specify: \(T = -\frac{\partial V}{\partial \theta}\)

Parameters:


	\(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}}(\theta)\) - evaluated by func (see example)


	coefficients passed to func - coeff (see example)




The table width is set once when table is specified. There are two ways to specify the other
parameters.

Set table from a given function

When you have a functional form for T and F, you can enter that
directly into python. table will evaluate the given function over width points between \(0\) and \(\pi\)
and use the resulting values in the table:

def harmonic(theta, kappa, theta_0):
    V = 0.5 * kappa * (theta-theta_0)**2;
    T = -kappa*(theta-theta_0);
    return (V, T)

btable = angle.table(width=1000)
btable.angle_coeff.set('angle1', func=harmonic, coeff=dict(kappa=330, theta_0=0))
btable.angle_coeff.set('angle2', func=harmonic,coeff=dict(kappa=30, theta_0=0.1))





Set a table from a file

When you have no function for for T or F, or you otherwise have the data listed in a file, table can use the given
values directly. You must first specify the number of rows in your tables when initializing table. Then use
set_from_file() to read the file:

btable = angle.table(width=1000)
btable.set_from_file('polymer', 'angle.dat')






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_from_file(anglename, filename)

	Set a angle pair interaction from a file.


	Parameters

	
	anglename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of angle


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read








The provided file specifies V and F at equally spaced theta values:

#t  V    T
0.0 2.0 -3.0
1.5707 3.0 -4.0
3.1414 2.0 -3.0






Warning

The theta values are not used by the code.  It is assumed that a table that has N rows will start at 0, end at \(\pi\)
and that \(\delta \theta = \pi/(N-1)\). The table is read
directly into the grid points used to evaluate \(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}}(\theta)\).














          

      

      

    

  

    
      
          
            
  
md.bond

Overview







	md.bond.fene

	FENE bond potential.



	md.bond.harmonic

	Harmonic bond potential.



	md.bond.table

	Tabulated bond potential.






Details

Bond potentials.

Bonds add forces between specified pairs of particles and are typically used to
model chemical bonds between two particles.

By themselves, bonds that have been specified in an initial configuration do nothing. Only when you
specify an bond force (i.e. bond.harmonic), are forces actually calculated between the
listed particles.


	
class hoomd.md.bond.coeff

	Define bond coefficients.

The coefficients for all bond potentials are specified using this class. Coefficients are
specified per bond type.

There are two ways to set the coefficients for a particular bond potential.
The first way is to save the bond potential in a variable and call set() directly.
See below for an example of this.

The second method is to build the coeff class first and then assign it to the
bond potential. There are some advantages to this method in that you could specify a
complicated set of bond potential coefficients in a separate python file and import
it into your job script.

Example:

my_coeffs = hoomd.md.bond.coeff();
my_bond_force.bond_coeff.set('polymer', k=330.0, r=0.84)
my_bond_force.bond_coeff.set('backbone', k=330.0, r=0.84)






	
set(type, **coeffs)

	Sets parameters for bond types.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of bond (or a list of type names)


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a bond type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the bond
potential you are setting these coefficients for, see the corresponding documentation.

All possible bond types as defined in the simulation box must be specified before executing run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
bond types that do not exist in the simulation. This can be useful in defining a potential field for many
different types of bonds even when some simulations only include a subset.

Examples:

my_bond_force.bond_coeff.set('polymer', k=330.0, r0=0.84)
my_bond_force.bond_coeff.set('backbone', k=1000.0, r0=1.0)
my_bond_force.bond_coeff.set(['bondA','bondB'], k=100, r0=0.0)






Note

Single parameters can be updated. If both k and r0 have already been set for a particle type,
then executing coeff.set('polymer', r0=1.0) will update the value of r0 and leave the other
parameters as they were previously set.












	
class hoomd.md.bond.fene(name=None)

	FENE bond potential.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the bond instance.





fene specifies a FENE potential energy between the two particles in each defined bond.


\[V(r) = - \frac{1}{2} k r_0^2 \ln \left( 1 - \left( \frac{r - \Delta}{r_0} \right)^2 \right) + V_{\mathrm{WCA}}(r)\]

where \(\vec{r}\) is the vector pointing from one particle to the other in the bond,
\(\Delta = (d_i + d_j)/2 - 1\), \(d_i\) is the diameter of particle \(i\), and


\begin{eqnarray*}
V_{\mathrm{WCA}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r - \Delta} \right)^{12} - \left( \frac{\sigma}{r - \Delta} \right)^{6} \right]  + \varepsilon & r-\Delta < 2^{\frac{1}{6}}\sigma\\
           = & 0          & r-\Delta \ge 2^{\frac{1}{6}}\sigma
\end{eqnarray*}
Coefficients:


	\(k\) - attractive force strength k (in units of energy/distance^2)


	\(r_0\) - size parameter r0 (in distance units)


	\(\varepsilon\) - repulsive force strength epsilon (in energy units)


	\(\sigma\) - repulsive force interaction distance sigma (in distance units)




Examples:

fene = bond.fene()
fene.bond_coeff.set('polymer', k=30.0, r0=1.5, sigma=1.0, epsilon= 2.0)
fene.bond_coeff.set('backbone', k=100.0, r0=1.0, sigma=1.0, epsilon= 2.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.bond.harmonic(name=None)

	Harmonic bond potential.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the bond instance.





harmonic specifies a harmonic potential energy between the two particles in each defined bond.


\[V(r) = \frac{1}{2} k \left( r - r_0 \right)^2\]

where \(\vec{r}\) is the vector pointing from one particle to the other in the bond.

Coefficients:


	\(k\) - force constant k (in units of energy/distance^2)


	\(r_0\) - bond rest length r0 (in distance units)




Example:

harmonic = bond.harmonic(name="mybond")
harmonic.bond_coeff.set('polymer', k=330.0, r0=0.84)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.bond.table(width, name=None)

	Tabulated bond potential.


	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to use to interpolate V and F


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the potential instance








table specifies that a tabulated bond potential should be applied between the two particles in each
defined bond.

The force \(\vec{F}\) is (in force units) and the potential \(V(r)\) is (in energy units):


\begin{eqnarray*}
\vec{F}(\vec{r})     = & 0                           & r < r_{\mathrm{min}} \\
                     = & F_{\mathrm{user}}(r)\hat{r} & r < r_{\mathrm{max}} \\
                     = & 0                           & r \ge r_{\mathrm{max}} \\
                     \\
V(r)       = & 0                    & r < r_{\mathrm{min}} \\
           = & V_{\mathrm{user}}(r) & r < r_{\mathrm{max}} \\
           = & 0                    & r \ge r_{\mathrm{max}} \\
\end{eqnarray*}
where \(\vec{r}\) is the vector pointing from one particle to the other in the bond.  Care should be taken to
define the range of the bond so that it is not possible for the distance between two bonded particles to be outside the
specified range.  On the CPU, this will throw an error.  On the GPU, this will throw an error if GPU error checking is enabled.

\(F_{\mathrm{user}}(r)\) and \(V_{\mathrm{user}}(r)\) are evaluated on width grid points between
\(r_{\mathrm{min}}\) and \(r_{\mathrm{max}}\). Values are interpolated linearly between grid points.
For correctness, you must specify the force defined by: \(F = -\frac{\partial V}{\partial r}\)

The following coefficients must be set for each bond type:


	\(F_{\mathrm{user}}(r)\) and \(V_{\mathrm{user}}(r)\) - evaluated by func (see example)


	coefficients passed to func - coeff (see example)


	\(r_{\mathrm{min}}\) - rmin (in distance units)


	\(r_{\mathrm{max}}\) - rmax (in distance units)




The table width is set once when bond.table is specified.
There are two ways to specify the other parameters.

Set table from a given function

When you have a functional form for V and F, you can enter that
directly into python. table will evaluate the given function over width points between rmin and rmax
and use the resulting values in the table:

def harmonic(r, rmin, rmax, kappa, r0):
   V = 0.5 * kappa * (r-r0)**2;
   F = -kappa*(r-r0);
   return (V, F)

btable = bond.table(width=1000)
btable.bond_coeff.set('bond1', func=harmonic, rmin=0.2, rmax=5.0, coeff=dict(kappa=330, r0=0.84))
btable.bond_coeff.set('bond2', func=harmonic, rmin=0.2, rmax=5.0, coeff=dict(kappa=30, r0=1.0))





Set a table from a file

When you have no function for for V or F, or you otherwise have the data listed in a file, table can use the given
values directly. You must first specify the number of rows in your tables when initializing bond.table. Then use
set_from_file() to read the file:

btable = bond.table(width=1000)
btable.set_from_file('polymer', 'btable.file')






Note

For potentials that diverge near r=0, make sure to set rmin to a reasonable value. If a potential does
not diverge near r=0, then a setting of rmin=0 is valid.




Note

Ensure that rmin and rmax cover the range of possible bond lengths. When gpu error checking is on, a error will
be thrown if a bond distance is outside than this range.




	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_from_file(bondname, filename)

	Set a bond pair interaction from a file.


	Parameters

	
	bondname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of bond


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read








The provided file specifies V and F at equally spaced r values.
Example:

#r  V    F
1.0 2.0 -3.0
1.1 3.0 -4.0
1.2 2.0 -3.0
1.3 1.0 -2.0
1.4 0.0 -1.0
1.5 -1.0 0.0





The first r value sets rmin, the last sets rmax. Any line with # as the first non-whitespace character is
is treated as a comment. The r values must monotonically increase and be equally spaced. The table is read
directly into the grid points used to evaluate \(F_{\mathrm{user}}(r)\) and \(V_{\mathrm{user}}(r)\).












          

      

      

    

  

    
      
          
            
  
md.charge

Overview







	md.charge.pppm

	Long-range electrostatics computed with the PPPM method.






Details

Electrostatic potentials.

Charged interactions are usually long ranged, and for computational efficiency this is split
into two parts, one part computed in real space and on in Fourier space. You don’t need to worry about this
implementation detail, however, as charge commands in hoomd automatically initialize and configure both the long
and short range parts.

Only one method of computing charged interactions should be used at a time. Otherwise, they would add together and
produce incorrect results.


	
class hoomd.md.charge.pppm(group, nlist)

	Long-range electrostatics computed with the PPPM method.


	Parameters

	
	group (hoomd.group) – Group on which to apply long range PPPM forces. The short range part is always applied between
all particles.


	nlist (hoomd.md.nlist) – Neighbor list








D. LeBard et. al. 2012 [http://dx.doi.org/10.1039/c1sm06787g] describes the PPPM implementation details in
HOOMD-blue. Please cite it if you utilize the PPPM functionality in your work.

pppm specifies both the long-ranged and short range parts of the electrostatic
force should be computed between all charged particles in the simulation. In other words, pppm
initializes and sets all parameters for its own hoomd.md.pair.ewald, so do not specify an additional one.

The command supports additional screening of interactions, according to the Ewald summation for Yukawa potentials.
This is useful if one wants to compute a screened interaction (i.e. a solution to the linearized Poisson-Boltzmann
equation), yet the cut-off radius is so large that the computation with a purely short-ranged potential would become
inefficient. In that case, the inverse Debye screening length can be supplied using set_params().
Also see Salin, G and Caillol, J. 2000, <http://dx.doi.org/10.1063/1.1326477>.

Parameters:


	Nx - Number of grid points in x direction


	Ny - Number of grid points in y direction


	Nz - Number of grid points in z direction


	order - Number of grid points in each direction to assign charges to


	\(r_{\mathrm{cut}}\) - Cutoff for the short-ranged part of the electrostatics calculation




Parameters Nx, Ny, Nz, order, \(r_{\mathrm{cut}}\) must be set using
set_params() before any hoomd.run() can take place.

See Units for information on the units assigned to charges in hoomd.


Note

pppm takes a particle group as an option. This should be the group of all charged particles
(hoomd.group.charged()). However, note that this group is static and determined at the time
pppm is specified. If you are going to add charged particles at a later point in the simulation
with the data access API, ensure that this group includes those particles as well.




Important

In MPI simulations, the number of grid point along every dimensions must be a power of two.



Example:

charged = group.charged();
pppm = charge.pppm(group=charged)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_params(Nx, Ny, Nz, order, rcut, alpha=0.0)

	Sets PPPM parameters.


	Parameters

	
	Nx (int [https://docs.python.org/3/library/functions.html#int]) – Number of grid points in x direction


	Ny (int [https://docs.python.org/3/library/functions.html#int]) – Number of grid points in y direction


	Nz (int [https://docs.python.org/3/library/functions.html#int]) – Number of grid points in z direction


	order (int [https://docs.python.org/3/library/functions.html#int]) – Number of grid points in each direction to assign charges to


	rcut (float [https://docs.python.org/3/library/functions.html#float]) – Cutoff for the short-ranged part of the electrostatics calculation


	alpha (float, optional) – Debye screening parameter (in units 1/distance)
.. versionadded:: 2.1








Examples:

pppm.set_params(Nx=64, Ny=64, Nz=64, order=6, rcut=2.0)





Note that the Fourier transforms are much faster for number of grid points of the form 2^N.












          

      

      

    

  

    
      
          
            
  
md.constrain

Overview







	md.constrain.distance

	Constrain pairwise particle distances.



	md.constrain.rigid

	Constrain particles in rigid bodies.



	md.constrain.sphere

	Constrain particles to the surface of a sphere.



	md.constrain.oneD

	Constrain particles to move along a specific direction only






Details

Constraints.

Constraint forces constrain a given set of particle to a given surface, to have some relative orientation,
or impose some other type of constraint. For example, a group of particles can be constrained to the surface of a
sphere with sphere.

As with other force commands in hoomd, multiple constrain commands can be issued to specify multiple
constraints, which are additively applied.


Warning

Constraints will be invalidated if two separate constraint commands apply to the same particle.



The degrees of freedom removed from the system by constraints are correctly taken into account when computing the
temperature for thermostatting and logging.


	
class hoomd.md.constrain.distance

	Constrain pairwise particle distances.

distance specifies that forces will be applied to all particles pairs for
which constraints have been defined.

The constraint algorithm implemented is described in:



	[1] M. Yoneya, H. J. C. Berendsen, and K. Hirasawa, “A Non-Iterative Matrix Method for Constraint Molecular Dynamics Simulations,” Mol. Simul., vol. 13, no. 6, pp. 395–405, 1994.


	[2] M. Yoneya, “A Generalized Non-iterative Matrix Method for Constraint Molecular Dynamics Simulations,” J. Comput. Phys., vol. 172, no. 1, pp. 188–197, Sep. 2001.







In brief, the second derivative of the Lagrange multipliers with respect to time is set to zero, such
that both the distance constraints and their time derivatives are conserved within the accuracy of the Velocity
Verlet scheme, i.e. within \(\Delta t^2\). The corresponding linear system of equations is solved.
Because constraints are satisfied at \(t + 2 \Delta t\), the scheme is self-correcting and drifts are avoided.


Warning

In MPI simulations, all particles connected through constraints will be communicated between processors as ghost particles.
Therefore, it is an error when molecules defined by constraints extend over more than half the local domain size.




Caution

constrain.distance() does not currently interoperate with integrate.brownian() or integrate.langevin()



Example:

constrain.distance()






	
disable()

	Disable the force.

Example:

force.disable()





Executing the disable command removes the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable()






	
enable()

	Enable the force.

Example:

force.enable()





See disable().






	
set_params(rel_tol=None)

	Set parameters for constraint computation.


	Parameters

	rel_tol (float [https://docs.python.org/3/library/functions.html#float]) – The relative tolerance with which constraint violations are detected (optional).





Example:

dist = constrain.distance()
dist.set_params(rel_tol=0.0001)














	
class hoomd.md.constrain.oneD(group, constraint_vector=[0, 0, 1])

	Constrain particles to move along a specific direction only


	Parameters

	
	group (hoomd.group) – Group on which to apply the constraint.


	constraint_vector (list [https://docs.python.org/3/library/stdtypes.html#list]) – [x,y,z] list indicating the direction that the particles are restricted to








oneD specifies that forces will be applied to all particles in the given group to constrain
them to only move along a given vector.

Example:

constrain.oneD(group=groupA, constraint_vector=[1,0,0])






New in version 2.1.




	
disable()

	Disable the force.

Example:

force.disable()





Executing the disable command removes the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable()






	
enable()

	Enable the force.

Example:

force.enable()





See disable().










	
class hoomd.md.constrain.rigid

	Constrain particles in rigid bodies.

Overview

Rigid bodies are defined by a single central particle and a number of
constituent particles. All of these are particles in the HOOMD system configuration and can interact with
other particles via force computes. The mass and moment of inertia of the central particle set the full
mass and moment of inertia of the rigid body (constituent particle mass is ignored).

The central particle is at the center of mass of the rigid body and the orientation quaternion defines the rotation
from the body space into the simulation box. In body space, the center of mass of the body is at 0,0,0 and the
moment of inertia is diagonal. You specify the constituent particles to rigid for each type of body
in body coordinates. Then, rigid takes control of those particles, and sets their position and
orientation in the simulation box relative to the position and orientation of the central particle.
rigid also transfers forces and torques from constituent particles to the central
particle. Then, MD integrators can use these forces and torques to integrate the equations of motion of the
central particles (representing the whole rigid body) forward in time.

Defining bodies

rigid accepts one local body environment per body type. The type of a body is the particle type
of the central particle in that body. In this way, each particle of type R in the system configuration defines
a body of type R.

As a convenience, you do not need to create placeholder entries for all of the constituent particles in your
initial configuration. You only need to specify the positions and orientations of all the central particles.
When you call create_bodies(), it will create all constituent particles that do not exist. (those
that already exist e.g. in a restart file are left unchanged).

Example that creates rigid rods:

# Place the type R central particles
uc = hoomd.lattice.unitcell(N = 1,
                            a1 = [10.8, 0,   0],
                            a2 = [0,    1.2, 0],
                            a3 = [0,    0,   1.2],
                            dimensions = 3,
                            position = [[0,0,0]],
                            type_name = ['R'],
                            mass = [1.0],
                            moment_inertia = [[0,
                                               1/12*1.0*8**2,
                                               1/12*1.0*8**2]],
                            orientation = [[1, 0, 0, 0]]);
system = hoomd.init.create_lattice(unitcell=uc, n=[2,18,18]);

# Add constituent particles of type A and create the rods
system.particles.types.add('A');
rigid = hoomd.md.constrain.rigid();
rigid.set_param('R',
                types=['A']*8,
                positions=[(-4,0,0),(-3,0,0),(-2,0,0),(-1,0,0),
                           (1,0,0),(2,0,0),(3,0,0),(4,0,0)]);

rigid.create_bodies()






Danger

Automatic creation of constituent particles can change particle tags. If bonds have been defined between
particles in the initial configuration, or bonds connect to constituent particles, rigid bodies should be
created manually.



When you create the constituent particles manually (i.e. in an input file or with snapshots), the central particle
of a rigid body must have a lower tag than all of its constituent particles. Constituent particles follow in
monotonically increasing tag order, corresponding to the order they were defined in the argument to
set_param(). The order of central and contiguous particles need not to be contiguous.
Additionally, you must set the body field for each of the particles in the rigid body to the tag of
the central particle (for both the central and constituent particles). Set body to -1 for particles that do
not belong to a rigid body. After setting an initial configuration that contains properly defined bodies and
all their constituent particles, call validate_bodies() to verify that the bodies are defined
and prepare the constraint.

You must call either create_bodies() or validate_bodies() prior to starting a simulation
hoomd.run().

Integrating bodies

Most integrators in HOOMD support the integration of rotational degrees of freedom. When there are rigid bodies
present in the system, do not apply integrators to the constituent particles, only the central and non-rigid
particles.

Example:

rigid = hoomd.group.rigid_center();
hoomd.md.integrate.langevin(group=rigid, kT=1.0, seed=42);





Thermodynamic quantities of bodies

HOOMD computes thermodynamic quantities (temperature, kinetic energy, etc…) appropriately when there are rigid
bodies present in the system. When it does so, it ignores all constituent particles and computes the translational
and rotational energies of the central particles, which represent the whole body. hoomd.analyze.log
can log the translational and rotational energy terms separately.

Restarting simulations with rigid bodies.

To restart, use hoomd.dump.gsd to write restart files. GSD stores all of the particle data fields
needed to reconstruct the state of the system, including the body tag, rotational momentum, and orientation
of the body. Restarting from a gsd file is equivalent to manual constituent particle creation. You still need to
specify the same local body space environment to rigid as you did in the earlier simulation.


	
create_bodies(create=True)

	Create copies of rigid bodies.


	Parameters

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, create rigid bodies, otherwise validate existing ones.










	
disable()

	Disable the force.

Example:

force.disable()





Executing the disable command removes the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable()






	
enable()

	Enable the force.

Example:

force.enable()





See disable().






	
set_param(type_name, types, positions, orientations=None, charges=None, diameters=None)

	Set constituent particle types and coordinates for a rigid body.


	Parameters

	
	type_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the central particle


	types (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of types of constituent particles


	positions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of relative positions of constituent particles


	orientations (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of orientations of constituent particles (optional)


	charge (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of charges of constituent particles (optional)


	diameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of diameters of constituent particles (optional)









Caution

The constituent particle type must be exist.
If it does not exist, it can be created on the fly using
system.particles.types.add('A_const') (see hoomd.data).



Example:

rigid = constrain.rigid()
rigid.set_param('A', types = ['A_const', 'A_const'], positions = [(0,0,1),(0,0,-1)])
rigid.set_param('B', types = ['B_const', 'B_const'], positions = [(0,0,.5),(0,0,-.5)])










	
validate_bodies()

	Validate that bodies are well defined and prepare for the simulation run.










	
class hoomd.md.constrain.sphere(group, P, r)

	Constrain particles to the surface of a sphere.


	Parameters

	
	group (hoomd.group) – Group on which to apply the constraint.


	P (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – (x,y,z) tuple indicating the position of the center of the sphere (in distance units).


	r (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the sphere (in distance units).








sphere specifies that forces will be applied to all particles in the given group to constrain
them to a sphere. Currently does not work with Brownian or Langevin dynamics (hoomd.md.integrate.brownian
and hoomd.md.integrate.langevin).

Example:

constrain.sphere(group=groupA, P=(0,10,2), r=10)






	
disable()

	Disable the force.

Example:

force.disable()





Executing the disable command removes the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable()






	
enable()

	Enable the force.

Example:

force.enable()





See disable().












          

      

      

    

  

    
      
          
            
  
md.dihedral

Overview







	md.dihedral.harmonic

	Harmonic dihedral potential.



	md.dihedral.opls

	OPLS dihedral force



	md.dihedral.table

	Tabulated dihedral potential.






Details

Dihedral potentials.

Dihedrals add forces between specified quadruplets of particles and are typically used to
model rotation about chemical bonds.

By themselves, dihedrals that have been specified in an input file do nothing. Only when you
specify an dihedral force (i.e. dihedral.harmonic), are forces actually calculated between the
listed particles.

Important:
There are multiple conventions pertaining to the dihedral angle (phi) in the literature. HOOMD
utilizes the convention shown in the following figure, where vectors are defined from the central
particles to the outer particles. These vectors correspond to a stretched state (phi=180 deg)
when they are anti-parallel and a compact state (phi=0 deg) when they are parallel.

[image: Dihedral angle definition]

	
class hoomd.md.dihedral.coeff

	Defines dihedral coefficients.

The coefficients for all dihedral force are specified using this class. Coefficients are
specified per dihedral type.

There are two ways to set the coefficients for a particular dihedral force.
The first way is to save the dihedral force in a variable and call set() directly.
See below for an example of this.

The second method is to build the coeff class first and then assign it to the
dihedral force. There are some advantages to this method in that you could specify a
complicated set of dihedral force coefficients in a separate python file and import
it into your job script.

Examples:

my_coeffs = dihedral.coeff();
my_dihedral_force.dihedral_coeff.set('polymer', k=330.0, r=0.84)
my_dihedral_force.dihedral_coeff.set('backbone', k=330.0, r=0.84)






	
set(type, **coeffs)

	Sets parameters for dihedral types.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of dihedral, or list of types


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a dihedral type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the dihedral
force you are setting these coefficients for, see the corresponding documentation.

All possible dihedral types as defined in the simulation box must be specified before executing run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
dihedral types that do not exist in the simulation. This can be useful in defining a force field for many
different types of dihedrals even when some simulations only include a subset.

To set the same coefficients between many particle types, provide a list of type names instead of a single
one. All types in the list will be set to the same parameters.

Examples:

my_dihedral_force.dihedral_coeff.set('polymer', k=330.0, r0=0.84)
my_dihedral_force.dihedral_coeff.set('backbone', k=1000.0, r0=1.0)
my_dihedral_force.dihedral_coeff.set(['dihedralA','dihedralB'], k=100, r0=0.0)






Note

Single parameters can be updated. If both k and r0 have already been set for a particle type,
then executing coeff.set('polymer', r0=1.0) will update the value of r0 and leave the other
parameters as they were previously set.












	
class hoomd.md.dihedral.harmonic

	Harmonic dihedral potential.

harmonic specifies a harmonic dihedral potential energy between every defined dihedral
quadruplet of particles in the simulation:


\[V(r) = \frac{1}{2}k \left( 1 + d \cos\left(n * \phi(r) - \phi_0 \right) \right)\]

where \(\phi\) is angle between two sides of the dihedral.

Coefficients:


	\(k\) - strength of force (in energy units)


	\(d\) - sign factor (unitless)


	\(n\) - angle scaling factor (unitless)


	\(\phi_0\) - phase shift  phi_0 (in radians) - optional: defaults to 0.0




Coefficients \(k\), \(d\), \(n\) must be set for each type of dihedral in the simulation using
dihedral_coeff.set().

Examples:

harmonic.dihedral_coeff.set('phi-ang', k=30.0, d=-1, n=3)
harmonic.dihedral_coeff.set('psi-ang', k=100.0, d=1, n=4, phi_0=math.pi/2)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.dihedral.opls

	OPLS dihedral force

opls specifies an OPLS-style dihedral potential energy between every defined dihedral.


\[V(r) = \frac{1}{2}k_1 \left( 1 + \cos\left(\phi \right) \right) + \frac{1}{2}k_2 \left( 1 - \cos\left(2 \phi \right) \right)
       + \frac{1}{2}k_3 \left( 1 + \cos\left(3 \phi \right) \right) + \frac{1}{2}k_4 \left( 1 - \cos\left(4 \phi \right) \right)\]

where \(\phi\) is the angle between two sides of the dihedral and \(k_n\) are the force coefficients
in the Fourier series (in energy units).

\(k_1\), \(k_2\), \(k_3\), and \(k_4\) must be set for each type of dihedral in the simulation using
dihedral_coeff.set().

Example:

opls_di.dihedral_coeff.set('dihedral1', k1=30.0, k2=15.5, k3=2.2, k4=23.8)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.dihedral.table(width, name=None)

	Tabulated dihedral potential.


	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to use to interpolate V and T (see documentation above)


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance








table specifies that a tabulated dihedral force should be applied to every define dihedral.

\(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}}(\theta)\) are evaluated on width grid points between
\(-\pi\) and \(\pi\). Values are interpolated linearly between grid points.
For correctness, you must specify the derivative of the potential with respect to the dihedral angle,
defined by: \(T = -\frac{\partial V}{\partial \theta}\).

Parameters:


	\(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}} (\theta)\) - evaluated by func (see example)


	coefficients passed to func - coeff (see example)




Set table from a given function

When you have a functional form for V and T, you can enter that
directly into python. table will evaluate the given function over width points between \(-\pi\) and \(\pi\)
and use the resulting values in the table:

def harmonic(theta, kappa, theta0):
   V = 0.5 * kappa * (theta-theta0)**2;
   F = -kappa*(theta-theta0);
   return (V, F)

dtable = dihedral.table(width=1000)
dtable.dihedral_coeff.set('dihedral1', func=harmonic, coeff=dict(kappa=330, theta_0=0.0))
dtable.dihedral_coeff.set('dihedral2', func=harmonic,coeff=dict(kappa=30, theta_0=1.0))





Set a table from a file

When you have no function for for V or T, or you otherwise have the data listed in a file, dihedral.table can use the given
values directly. You must first specify the number of rows in your tables when initializing table. Then use
set_from_file() to read the file.


dtable = dihedral.table(width=1000)
dtable.set_from_file(‘polymer’, ‘dihedral.dat’)





	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_from_file(dihedralname, filename)

	Set a dihedral pair interaction from a file.


	Parameters

	
	dihedralname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of dihedral


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read








The provided file specifies V and F at equally spaced theta values.

Example:

#t  V    T
-3.141592653589793 2.0 -3.0
-1.5707963267948966 3.0 -4.0
0.0 2.0 -3.0
1.5707963267948966 3.0 -4.0
3.141592653589793 2.0 -3.0






Note

The theta values are not used by the code.  It is assumed that a table that has N rows will start at \(-\pi\), end at \(\pi\)
and that \(\delta \theta = 2\pi/(N-1)\). The table is read
directly into the grid points used to evaluate \(T_{\mathrm{user}}(\theta)\) and \(V_{\mathrm{user}}(\theta)\).














          

      

      

    

  

    
      
          
            
  
md.external

Overview







	md.external.periodic

	One-dimension periodic potential.



	md.external.e_field

	Electric field.






Details

External forces.

Apply an external force to all particles in the simulation. This module organizes all external forces.
As an example, a force derived from a periodic potential can be used to induce a concentration modulation
in the system.


	
class hoomd.md.external.coeff

	Defines external potential coefficients.

The coefficients for all external forces are specified using this class. Coefficients are specified per particle
type.

Example:

my_external_force.force_coeff.set('A', A=1.0, i=1, w=0.02, p=3)
my_external_force.force_coeff.set('B', A=-1.0, i=1, w=0.02, p=3)






	
set(type, **coeffs)

	Sets parameters for particle types.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of particle (or list of types)


	coeff – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a particle type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the external
force you are setting these coefficients for, see the corresponding documentation.

All possible particle types as defined in the simulation box must be specified before executing run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
particle types that do not exist in the simulation. This can be useful in defining a force field for many
different types of particles even when some simulations only include a subset.

To set the same coefficients between many particle types, provide a list of type names instead of a single
one. All types in the list will be set to the same parameters. A convenient wildcard that lists all types
of particles in the simulation can be gotten from a saved system from the init command.

Examples:

coeff.set('A', A=1.0, i=1, w=0.02, p=3)
coeff.set('B', A=-1.0, i=1, w=0.02, p=3)
coeff.set(['A','B'], i=1, w=0.02, p=3)






Note

Single parameters can be updated. For example,
executing coeff.set('A', A=1.0) will update the value of A and leave the other parameters as they
were previously set.












	
class hoomd.md.external.e_field(field, name='')

	Electric field.

e_field specifies that an external force should be
added to every particle in the simulation that results from an electric field.

The external potential \(V(\vec{r})\) is implemented using the following formula:


\[V(\vec{r}) = - q_i \vec{E} \cdot \vec{r}\]

where \(q_i\) is the particle charge and \(\vec{E}\) is the field vector

Example:

# Apply an electric field in the x-direction
e_field = external.e_field((1,0,0))






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.external.periodic(name='')

	One-dimension periodic potential.

periodic specifies that an external force should be
added to every particle in the simulation to induce a periodic modulation
in the particle concentration. The force parameters can be set on a per particle
type basis. The potential can e.g. be used to induce an ordered phase in a block-copolymer melt.

The external potential \(V(\vec{r})\) is implemented using the following formula:


\[V(\vec{r}) = A * \tanh\left[\frac{1}{2 \pi p w} \cos\left(p \vec{b}_i\cdot\vec{r}\right)\right]\]

where \(A\) is the ordering parameter, \(\vec{b}_i\) is the reciprocal lattice vector direction
\(i=0..2\), \(p\) the periodicity and \(w\) the interface width
(relative to the distance \(2\pi/|\mathbf{b_i}|\) between planes in the \(i\)-direction).
The modulation is one-dimensional. It extends along the lattice vector \(\mathbf{a}_i\) of the
simulation cell.

Examples:

# Apply a periodic composition modulation along the first lattice vector
periodic = external.periodic()
periodic.force_coeff.set('A', A=1.0, i=0, w=0.02, p=3)
periodic.force_coeff.set('B', A=-1.0, i=0, w=0.02, p=3)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
md.force

Overview







	md.force.active

	Active force.



	md.force.constant

	Constant force.



	md.force.dipole

	Treat particles as dipoles in an electric field.






Details

Apply forces to particles.


	
class hoomd.md.force.active(seed, group, f_lst=None, t_lst=None, orientation_link=True, orientation_reverse_link=False, rotation_diff=0, constraint=None)

	Active force.


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – required user-specified seed number for random number generator.


	f_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – An array of (x,y,z) tuples for the active force vector for each individual particle.


	t_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – An array of (x,y,z) tuples that indicate active torque vectors for each particle


	group (hoomd.group) – Group for which the force will be set


	orientation_link (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then forces and torques are applied in the particle’s reference frame. If false, then the box
reference frame is used. Only relevant for non-point-like anisotropic particles.


	orientation_reverse_link (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the particle’s orientation is set to match the active force vector. Useful for
for using a particle’s orientation to log the active force vector. Not recommended for anisotropic particles. Quaternion rotation
assumes base vector of (0,0,1).


	rotation_diff (float [https://docs.python.org/3/library/functions.html#float]) – rotational diffusion constant, \(D_r\), for all particles in the group.


	constraint (hoomd.md.update.constraint_ellipsoid) – such as update.constraint_ellipsoid.








active specifies that an active force should be added to all particles.
Obeys \(\delta {\bf r}_i = \delta t v_0 \hat{p}_i\), where \(v_0\) is the active velocity. In 2D
\(\hat{p}_i = (\cos \theta_i, \sin \theta_i)\) is the active force vector for particle \(i\); and the
diffusion of the active force vector follows \(\delta \theta / \delta t = \sqrt{2 D_r / \delta t} \Gamma\),
where \(D_r\) is the rotational diffusion constant, and the gamma function is a unit-variance random variable,
whose components are uncorrelated in time, space, and between particles.
In 3D, \(\hat{p}_i\) is a unit vector in 3D space, and diffusion follows
\(\delta \hat{p}_i / \delta t = \sqrt{2 D_r / \delta t} \Gamma (\hat{p}_i (\cos \theta - 1) + \hat{p}_r \sin \theta)\), where
\(\hat{p}_r\) is an uncorrelated random unit vector. The persistence length of an active particle’s path is
\(v_0 / D_r\).


Attention

active() does not support MPI execution.



Examples:

force.active( seed=13, f_list=[tuple(3,0,0) for i in range(N)])

ellipsoid = update.constraint_ellipsoid(group=groupA, P=(0,0,0), rx=3, ry=4, rz=5)
force.active( seed=7, f_list=[tuple(1,2,3) for i in range(N)], orientation_link=False, rotation_diff=100, constraint=ellipsoid)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.force.constant(fx=None, fy=None, fz=None, fvec=None, tvec=None, group=None, callback=None)

	Constant force.


	Parameters

	
	fvec (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – force vector (in force units)


	tvec (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – torque vector (in torque units)


	fx (float [https://docs.python.org/3/library/functions.html#float]) – x component of force, retained for backwards compatibility


	fy (float [https://docs.python.org/3/library/functions.html#float]) – y component of force, retained for backwards compatibility


	fz (float [https://docs.python.org/3/library/functions.html#float]) – z component of force, retained for backwards compatibility


	group (hoomd.group) – Group for which the force will be set.


	callback (callable) – A python callback invoked every time the forces are computed








constant specifies that a constant force should be added to every
particle in the simulation or optionally to all particles in a group.


Note

Forces are kept constant during the simulation. If a callback should re-compute
particle forces every time step, it needs to overwrite the old forces of all
particles with new values.




Note

Per-particle forces take precedence over a particle group, which takes precedence over constant forces for all particles.



Examples:

force.constant(fx=1.0, fy=0.5, fz=0.25)
const = force.constant(fvec=(0.4,1.0,0.5))
const = force.constant(fvec=(0.4,1.0,0.5),group=fluid)
const = force.constant(fvec=(0.4,1.0,0.5), tvec=(0,0,1) ,group=fluid)

def update_forces(timestep):
    global const
    const.set_force(tag=1, fvec=(1.0*timestep,2.0*timestep,3.0*timestep))
const = force.constant(callback=update_forces)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.force.dipole(field_x, field_y, field_z, p)

	Treat particles as dipoles in an electric field.


	Parameters

	
	field_x (float [https://docs.python.org/3/library/functions.html#float]) – x-component of the field (units?)


	field_y (float [https://docs.python.org/3/library/functions.html#float]) – y-component of the field (units?)


	field_z (float [https://docs.python.org/3/library/functions.html#float]) – z-component of the field (units?)


	p (float [https://docs.python.org/3/library/functions.html#float]) – magnitude of the particles’ dipole moment in the local z direction








Examples:

force.external_field_dipole(field_x=0.0, field_y=1.0 ,field_z=0.5, p=1.0)
const_ext_f_dipole = force.external_field_dipole(field_x=0.0, field_y=1.0 ,field_z=0.5, p=1.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_params(field_y, field_z, p)

	Change the constant field and dipole moment.


	Parameters

	
	field_x (float [https://docs.python.org/3/library/functions.html#float]) – x-component of the field (units?)


	field_y (float [https://docs.python.org/3/library/functions.html#float]) – y-component of the field (units?)


	field_z (float [https://docs.python.org/3/library/functions.html#float]) – z-component of the field (units?)


	p (float [https://docs.python.org/3/library/functions.html#float]) – magnitude of the particles’ dipole moment in the local z direction








Examples:

const_ext_f_dipole = force.external_field_dipole(field_x=0.0, field_y=1.0 ,field_z=0.5, p=1.0)
const_ext_f_dipole.setParams(field_x=0.1, field_y=0.1, field_z=0.0, p=1.0))
















          

      

      

    

  

    
      
          
            
  
md.improper

Overview







	md.improper.harmonic

	Harmonic improper potential.






Details

Improper potentials.

Impropers add forces between specified quadruplets of particles and are typically used to
model rotation about chemical bonds without having bonds to connect the atoms. Their most
common use is to keep structural elements flat, i.e. model the effect of conjugated
double bonds, like in benzene rings and its derivatives.

By themselves, impropers that have been specified in an input file do nothing. Only when you
specify an improper force (i.e. improper.harmonic), are forces actually calculated between the
listed particles.


	
class hoomd.md.improper.coeff

	Define improper coefficients.

The coefficients for all improper force are specified using this class. Coefficients are
specified per improper type.

Examples:

my_coeffs = improper.coeff();
my_improper_force.improper_coeff.set('polymer', k=330.0, r=0.84)
my_improper_force.improper_coeff.set('backbone', k=330.0, r=0.84)






	
set(type, **coeffs)

	Sets parameters for one improper type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of improper (or list of types).


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a improper type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the improper
force you are setting these coefficients for, see the corresponding documentation.

All possible improper types as defined in the simulation box must be specified before executing hoomd.run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
improper types that do not exist in the simulation. This can be useful in defining a force field for many
different types of impropers even when some simulations only include a subset.

To set the same coefficients between many particle types, provide a list of type names instead of a single
one. All types in the list will be set to the same parameters.

Examples:

my_improper_force.improper_coeff.set('polymer', k=330.0, r0=0.84)
my_improper_force.improper_coeff.set('backbone', k=1000.0, r0=1.0)
my_improper_force.improper_coeff.set(['improperA','improperB'], k=100, r0=0.0)






Note

Single parameters can be updated. If both k and r0 have already been set for a particle type,
then executing coeff.set('polymer', r0=1.0) will update the value of r0 and leave the other
parameters as they were previously set.












	
class hoomd.md.improper.harmonic

	Harmonic improper potential.

The command improper.harmonic specifies a harmonic improper potential energy between every quadruplet of particles
in the simulation.


\[V(r) = \frac{1}{2}k \left( \chi - \chi_{0}  \right )^2\]

where \(\chi\) is angle between two sides of the improper.

Coefficients:


	\(k\) - strength of force, k (in energy units)


	\(\chi_{0}\) - equilibrium angle, chi (in radians)




Coefficients \(k\) and \(\chi_0\) must be set for each type of improper in the simulation using
improper_coeff.set().

Examples:

harmonic.improper_coeff.set('heme-ang', k=30.0, chi=1.57)
harmonic.improper_coeff.set('hydro-bond', k=20.0, chi=1.57)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
md.integrate

Overview







	md.integrate.berendsen

	Applies the Berendsen thermostat.



	md.integrate.brownian

	Brownian dynamics.



	md.integrate.langevin

	Langevin dynamics.



	md.integrate.mode_standard

	Enables a variety of standard integration methods.



	md.integrate.mode_minimize_fire

	Energy Minimizer (FIRE).



	md.integrate.npt

	NPT Integration via MTK barostat-thermostat.



	md.integrate.nph

	NPH Integration via MTK barostat-thermostat..



	md.integrate.nve

	NVE Integration via Velocity-Verlet



	md.integrate.nvt

	NVT Integration via the Nosé-Hoover thermostat.






Details

Integration methods.

To integrate the system forward in time, an integration mode must be set. Only one integration mode can be active at
a time, and the last integrate.mode_* command before the hoomd.run() command is the one that will take effect. It is
possible to set one mode, run for a certain number of steps and then switch to another mode before the next run
command.

The most commonly used mode is :py:class`mode_standard`. It specifies a standard mode where, at each time
step, all of the specified forces are evaluated and used in moving the system forward to the next step.
:py:class`mode_standard` doesn’t integrate any particles by itself, one or more compatible integration methods must
be specified before the staring a hoomd.run(). Like commands that specify forces, integration methods are
persistent and remain set until they are disabled.

To clarify, the following series of commands will run for 1000 time steps in the NVT ensemble and then switch to
NVE for another 1000 steps:

all = group.all()
integrate.mode_standard(dt=0.005)
nvt = integrate.nvt(group=all, kT=1.2, tau=0.5)
run(1000)
nvt.disable()
integrate.nve(group=all)
run(1000)





You can change integrator parameters between runs:

integrator = integrate.nvt(group=all, kT=1.2, tau=0.5)
run(100)
integrator.set_params(kT=1.0)
run(100)





This code snippet runs the first 100 time steps with kT=1.2 and the next 100 with kT=1.0.


	
class hoomd.md.integrate.berendsen(group, kT, tau)

	Applies the Berendsen thermostat.


	Parameters

	
	group (hoomd.group) – Group to which the Berendsen thermostat will be applied.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of thermostat. (in energy units).


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Time constant of thermostat. (in time units)








berendsen rescales the velocities of all particles on each time step. The rescaling is performed so that
the difference in the current temperature from the set point decays exponentially:
Berendsen et. al. 1984 [http://dx.doi.org/10.1063/1.448118].


\[\frac{dT_\mathrm{cur}}{dt} = \frac{T - T_\mathrm{cur}}{\tau}\]


Attention

berendsen does not function with MPI parallel simulations.




Attention

berendsen does not integrate rotational degrees of freedom.




	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
randomize_velocities(seed)

	Assign random velocities and angular momenta to particles in the
group, sampling from the Maxwell-Boltzmann distribution. This method
considers the dimensionality of the system and particle anisotropy, and
removes drift (the center of mass velocity).


New in version 2.3.




	Parameters

	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed






Note

Randomization is applied at the start of the next call to hoomd.run().



Example:

integrator = md.integrate.berendsen(group=group.all(), kT=1.0, tau=0.5)
integrator.randomize_velocities(seed=42)
run(100)














	
class hoomd.md.integrate.brownian(group, kT, seed, dscale=False, noiseless_t=False, noiseless_r=False)

	Brownian dynamics.


	Parameters

	
	group (hoomd.group) – Group of particles to apply this method to.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of the simulation (in energy units).


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed to use for generating \(\vec{F}_\mathrm{R}\).


	dscale (bool [https://docs.python.org/3/library/functions.html#bool]) – Control \(\lambda\) options. If 0 or False, use \(\gamma\) values set per type. If non-zero, \(\gamma = \lambda d_i\).


	noiseless_t (bool [https://docs.python.org/3/library/functions.html#bool]) – If set true, there will be no translational noise (random force)


	noiseless_r (bool [https://docs.python.org/3/library/functions.html#bool]) – If set true, there will be no rotational noise (random torque)








brownian integrates particles forward in time according to the overdamped Langevin equations of motion,
sometimes called Brownian dynamics, or the diffusive limit.


\[ \begin{align}\begin{aligned}\frac{d\vec{x}}{dt} = \frac{\vec{F}_\mathrm{C} + \vec{F}_\mathrm{R}}{\gamma}\\\langle \vec{F}_\mathrm{R} \rangle = 0\\\langle |\vec{F}_\mathrm{R}|^2 \rangle = 2 d k T \gamma / \delta t\\\langle \vec{v}(t) \rangle = 0\\\langle |\vec{v}(t)|^2 \rangle = d k T / m\end{aligned}\end{align} \]

where \(\vec{F}_\mathrm{C}\) is the force on the particle from all potentials and constraint forces,
\(\gamma\) is the drag coefficient, \(\vec{F}_\mathrm{R}\)
is a uniform random force, \(\vec{v}\) is the particle’s velocity, and \(d\) is the dimensionality
of the system. The magnitude of the random force is chosen via the fluctuation-dissipation theorem
to be consistent with the specified drag and temperature, \(T\).
When \(kT=0\), the random force \(\vec{F}_\mathrm{R}=0\).

brownian generates random numbers by hashing together the particle tag, user seed, and current
time step index. See C. L. Phillips et. al. 2011 [http://dx.doi.org/10.1016/j.jcp.2011.05.021] for more
information.


Attention

Change the seed if you reset the simulation time step to 0. If you keep the same seed, the simulation
will continue with the same sequence of random numbers used previously and may cause unphysical correlations.

For MPI runs: all ranks other than 0 ignore the seed input and use the value of rank 0.



brownian uses the integrator from I. Snook, The Langevin and Generalised Langevin Approach to the Dynamics of
Atomic, Polymeric and Colloidal Systems, 2007, section 6.2.5 [http://dx.doi.org/10.1016/B978-0-444-52129-3.50028-6],
with the exception that \(\vec{F}_\mathrm{R}\) is drawn from a uniform random number distribution.

In Brownian dynamics, particle velocities are completely decoupled from positions. At each time step,
brownian draws a new velocity distribution consistent with the current set temperature so that
hoomd.compute.thermo will report appropriate temperatures and pressures if logged or needed by other
commands.

Brownian dynamics neglects the acceleration term in the Langevin equation. This assumption is valid when
overdamped: \(\frac{m}{\gamma} \ll \delta t\). Use langevin if your system is not overdamped.

You can specify \(\gamma\) in two ways:


	Use set_gamma() to specify it directly, with independent values for each particle type in the system.


	Specify \(\lambda\) which scales the particle diameter to \(\gamma = \lambda d_i\). The units of
\(\lambda\) are mass / distance / time.




brownian must be used with integrate.mode_standard.

kT can be a variant type, allowing for temperature ramps in simulation runs.

A hoomd.compute.thermo is automatically created and associated with group.

Examples:

all = group.all();
integrator = integrate.brownian(group=all, kT=1.0, seed=5)
integrator = integrate.brownian(group=all, kT=1.0, dscale=1.5)
typeA = group.type('A');
integrator = integrate.brownian(group=typeA, kT=hoomd.variant.linear_interp([(0, 4.0), (1e6, 1.0)]), seed=10)






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
set_gamma(a, gamma)

	Set gamma for a particle type.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – \(\gamma\) for particle type a (in units of force/velocity)








set_gamma() sets the coefficient \(\gamma\) for a single particle type, identified
by name. The default is 1.0 if not specified for a type.

It is not an error to specify gammas for particle types that do not exist in the simulation.
This can be useful in defining a single simulation script for many different types of particles
even when some simulations only include a subset.

Examples:

bd.set_gamma('A', gamma=2.0)










	
set_gamma_r(a, gamma_r)

	Set gamma_r for a particle type.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name


	gamma_r (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – \(\gamma_r\) for particle type a (in units of force/velocity), optionally for all body frame directions








set_gamma_r() sets the coefficient \(\gamma_r\) for a single particle type, identified
by name. The default is 1.0 if not specified for a type. It must be positive or zero, if set
zero, it will have no rotational damping or random torque, but still with updates from normal net torque.

Examples:

bd.set_gamma_r('A', gamma_r=2.0)
bd.set_gamma_r('A', gamma_r=(1,2,3))










	
set_params(kT=None)

	Change langevin integrator parameters.


	Parameters

	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New temperature (if set) (in energy units).





Examples:

integrator.set_params(kT=2.0)














	
class hoomd.md.integrate.langevin(group, kT, seed, dscale=False, tally=False, noiseless_t=False, noiseless_r=False)

	Langevin dynamics.


	Parameters

	
	group (hoomd.group) – Group of particles to apply this method to.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of the simulation (in energy units).


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed to use for generating \(\vec{F}_\mathrm{R}\).


	dscale (bool [https://docs.python.org/3/library/functions.html#bool]) – Control \(\lambda\) options. If 0 or False, use \(\gamma\) values set per type. If non-zero, \(\gamma = \lambda d_i\).


	tally (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If true, the energy exchange between the thermal reservoir and the particles is
tracked. Total energy conservation can then be monitored by adding
langevin_reservoir_energy_groupname to the logged quantities.


	noiseless_t (bool [https://docs.python.org/3/library/functions.html#bool]) – If set true, there will be no translational noise (random force)


	noiseless_r (bool [https://docs.python.org/3/library/functions.html#bool]) – If set true, there will be no rotational noise (random torque)








Translational degrees of freedom

langevin integrates particles forward in time according to the Langevin equations of motion:


\[ \begin{align}\begin{aligned}m \frac{d\vec{v}}{dt} = \vec{F}_\mathrm{C} - \gamma \cdot \vec{v} + \vec{F}_\mathrm{R}\\\langle \vec{F}_\mathrm{R} \rangle = 0\\\langle |\vec{F}_\mathrm{R}|^2 \rangle = 2 d kT \gamma / \delta t\end{aligned}\end{align} \]

where \(\vec{F}_\mathrm{C}\) is the force on the particle from all potentials and constraint forces,
\(\gamma\) is the drag coefficient, \(\vec{v}\) is the particle’s velocity, \(\vec{F}_\mathrm{R}\)
is a uniform random force, and \(d\) is the dimensionality of the system (2 or 3).  The magnitude of
the random force is chosen via the fluctuation-dissipation theorem
to be consistent with the specified drag and temperature, \(T\).
When \(kT=0\), the random force \(\vec{F}_\mathrm{R}=0\).

langevin generates random numbers by hashing together the particle tag, user seed, and current
time step index. See C. L. Phillips et. al. 2011 [http://dx.doi.org/10.1016/j.jcp.2011.05.021] for more
information.


Attention

Change the seed if you reset the simulation time step to 0. If you keep the same seed, the simulation
will continue with the same sequence of random numbers used previously and may cause unphysical correlations.

For MPI runs: all ranks other than 0 ignore the seed input and use the value of rank 0.



Langevin dynamics includes the acceleration term in the Langevin equation and is useful for gently thermalizing
systems using a small gamma. This assumption is valid when underdamped: \(\frac{m}{\gamma} \gg \delta t\).
Use brownian if your system is not underdamped.

langevin uses the same integrator as nve with the additional force term
\(- \gamma \cdot \vec{v} + \vec{F}_\mathrm{R}\). The random force \(\vec{F}_\mathrm{R}\) is drawn
from a uniform random number distribution.

You can specify \(\gamma\) in two ways:


	Use set_gamma() to specify it directly, with independent values for each particle type in the system.


	Specify \(\lambda\) which scales the particle diameter to \(\gamma = \lambda d_i\). The units of
\(\lambda\) are mass / distance / time.




langevin must be used with mode_standard.

kT can be a variant type, allowing for temperature ramps in simulation runs.

A hoomd.compute.thermo is automatically created and associated with group.


Warning

When restarting a simulation, the energy of the reservoir will be reset to zero.



Examples:

all = group.all();
integrator = integrate.langevin(group=all, kT=1.0, seed=5)
integrator = integrate.langevin(group=all, kT=1.0, dscale=1.5, tally=True)
typeA = group.type('A');
integrator = integrate.langevin(group=typeA, kT=hoomd.variant.linear_interp([(0, 4.0), (1e6, 1.0)]), seed=10)






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
set_gamma(a, gamma)

	Set gamma for a particle type.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – \(\gamma\) for particle type a (in units of force/velocity)








set_gamma() sets the coefficient \(\gamma\) for a single particle type, identified
by name. The default is 1.0 if not specified for a type.

It is not an error to specify gammas for particle types that do not exist in the simulation.
This can be useful in defining a single simulation script for many different types of particles
even when some simulations only include a subset.

Examples:

bd.set_gamma('A', gamma=2.0)










	
set_gamma_r(a, gamma_r)

	Set gamma_r for a particle type.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – Particle type name


	gamma_r (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – \(\gamma_r\) for particle type a (in units of force/velocity), optionally for all body frame directions








set_gamma_r() sets the coefficient \(\gamma_r\) for a single particle type, identified
by name. The default is 1.0 if not specified for a type. It must be positive or zero, if set
zero, it will have no rotational damping or random torque, but still with updates from normal net torque.

Examples:

langevin.set_gamma_r('A', gamma_r=2.0)
langevin.set_gamma_r('A', gamma_r=(1.0,2.0,3.0))










	
set_params(kT=None, tally=None)

	Change langevin integrator parameters.


	Parameters

	
	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New temperature (if set) (in energy units).


	tally (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) If true, the energy exchange between the thermal reservoir and the particles is
tracked. Total energy conservation can then be monitored by adding
langevin_reservoir_energy_groupname to the logged quantities.








Examples:

integrator.set_params(kT=2.0)
integrator.set_params(tally=False)














	
class hoomd.md.integrate.mode_minimize_fire(dt, Nmin=5, finc=1.1, fdec=0.5, alpha_start=0.1, falpha=0.99, ftol=0.1, wtol=0.1, Etol=1e-05, min_steps=10, group=None, aniso=None)

	Energy Minimizer (FIRE).


	Parameters

	
	group (hoomd.group) – Particle group to apply minimization to.
Deprecated in version 2.2:
hoomd.md.integrate.mode_minimize_fire() now accepts integration methods, such as hoomd.md.integrate.nve()
and hoomd.md.integrate.nph(). The functions operate on user-defined groups. If group is defined here,
automatically hoomd.md.integrate.nve() will be used for integration


	dt (float [https://docs.python.org/3/library/functions.html#float]) – This is the maximum step size the minimizer is permitted to use.  Consider the stability of the system when setting. (in time units)


	Nmin (int [https://docs.python.org/3/library/functions.html#int]) – Number of steps energy change is negative before allowing \(\alpha\) and \(\delta t\) to adapt.


	finc (float [https://docs.python.org/3/library/functions.html#float]) – Factor to increase \(\delta t\) by


	fdec (float [https://docs.python.org/3/library/functions.html#float]) – Factor to decrease \(\delta t\) by


	alpha_start (float [https://docs.python.org/3/library/functions.html#float]) – Initial (and maximum) \(\alpha\)


	falpha (float [https://docs.python.org/3/library/functions.html#float]) – Factor to decrease \(\alpha t\) by


	ftol (float [https://docs.python.org/3/library/functions.html#float]) – force convergence criteria (in units of force over mass)


	wtol (float [https://docs.python.org/3/library/functions.html#float]) – angular momentum convergence criteria (in units of angular momentum)


	Etol (float [https://docs.python.org/3/library/functions.html#float]) – energy convergence criteria (in energy units)


	min_steps (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of attempts before convergence criteria are considered


	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to integrate rotational degrees of freedom (bool), default None (autodetect).
Added in version 2.2









New in version 2.1.




Changed in version 2.2.



mode_minimize_fire uses the Fast Inertial Relaxation Engine (FIRE) algorithm to minimize the energy
for a group of particles while keeping all other particles fixed.  This method is published in
Bitzek, et. al., PRL, 2006 [http://dx.doi.org/10.1103/PhysRevLett.97.170201].

At each time step, \(\delta t\), the algorithm uses the NVE Integrator to generate a x, v, and F, and then adjusts
v according to


\[\vec{v} = (1-\alpha)\vec{v} + \alpha \hat{F}|\vec{v}|\]

where \(\alpha\) and \(\delta t\) are dynamically adaptive quantities.  While a current search has been
lowering the energy of system for more than
\(N_{min}\) steps, \(\alpha\)  is decreased by \(\alpha \rightarrow \alpha f_{alpha}\) and
\(\delta t\) is increased by \(\delta t \rightarrow max(\delta t \cdot f_{inc}, \delta t_{max})\).
If the energy of the system increases (or stays the same), the velocity of the particles is set to 0,
\(\alpha \rightarrow \alpha_{start}\) and
\(\delta t \rightarrow \delta t \cdot f_{dec}\).  Convergence is determined by both the force per particle and
the change in energy per particle dropping below ftol and Etol, respectively or


\[\frac{\sum |F|}{N*\sqrt{N_{dof}}} <ftol \;\; and \;\; \Delta \frac{\sum |E|}{N} < Etol\]

where N is the number of particles the minimization is acting over (i.e. the group size)
Either of the two criterion can be effectively turned off by setting the tolerance to a large number.

If the minimization is acted over a subset of all the particles in the system, the “other” particles will be kept
frozen but will still interact with the particles being moved.

Examples:

fire=integrate.mode_minimize_fire(dt=0.05, ftol=1e-2, Etol=1e-7)
nve=integrate.nve(group=group.all())
while not(fire.has_converged()):
   run(100)





Examples:

fire=integrate.mode_minimize_fire(dt=0.05, ftol=1e-2, Etol=1e-7)
nph=integrate.nph(group=group.all(),P=0.0,gamma=.5)
while not(fire.has_converged()):
   run(100)






Note

The algorithm requires a base integrator to update the particle position and velocities.
Usually this will be either NVE (to minimize energy) or NPH (to minimize energy and relax the box).
The quantity minimized is in any case the energy (not the enthalpy or any other quantity).




Note

As a default setting, the algorithm will start with a \(\delta t = \frac{1}{10} \delta t_{max}\) and
attempts at least 10 search steps.  In practice, it was found that this prevents the simulation from making too
aggressive a first step, but also from quitting before having found a good search direction. The minimum number of
attempts can be set by the user.




	
get_energy()

	Returns the energy after the last iteration of the minimizer






	
has_converged()

	Test if the energy minimizer has converged.


	Returns

	True when the minimizer has converged. Otherwise, return False.










	
reset()

	Reset the minimizer to its initial state.






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(aniso=None)

	Changes parameters of an existing integration mode.


	Parameters

	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Anisotropic integration mode (bool), default None (autodetect).





Examples:

integrator_mode.set_params(aniso=False)














	
class hoomd.md.integrate.mode_standard(dt, aniso=None)

	Enables a variety of standard integration methods.


	Parameters

	
	dt (float [https://docs.python.org/3/library/functions.html#float]) – Each time step of the simulation hoomd.run() will advance the real time of the system forward by dt (in time units).


	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to integrate rotational degrees of freedom (bool), default None (autodetect).








mode_standard performs a standard time step integration technique to move the system forward. At each time
step, all of the specified forces are evaluated and used in moving the system forward to the next step.

By itself, mode_standard does nothing. You must specify one or more integration methods to apply to the
system. Each integration method can be applied to only a specific group of particles enabling advanced simulation
techniques.

The following commands can be used to specify the integration methods used by integrate.mode_standard.


	brownian


	langevin


	nve


	nvt


	npt


	nph




There can only be one integration mode active at a time. If there are more than one integrate.mode_* commands in
a hoomd script, only the most recent before a given hoomd.run() will take effect.

Examples:

integrate.mode_standard(dt=0.005)
integrator_mode = integrate.mode_standard(dt=0.001)





Some integration methods (notable nvt, npt and nph maintain state between
different hoomd.run() commands, to allow for restartable simulations. After adding or removing particles, however,
a new hoomd.run() will continue from the old state and the integrator variables will re-equilibrate.
To ensure equilibration from a unique reference state (such as all integrator variables set to zero),
the method :py:method:reset_methods() can be use to re-initialize the variables.


	
reset_methods()

	(Re-)initialize the integrator variables in all integration methods


New in version 2.2.



Examples:

run(100)
# .. modify the system state, e.g. add particles ..
integrator_mode.reset_methods()
run(100)










	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(dt=None, aniso=None)

	Changes parameters of an existing integration mode.


	Parameters

	
	dt (float [https://docs.python.org/3/library/functions.html#float]) – New time step delta (if set) (in time units).


	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Anisotropic integration mode (bool), default None (autodetect).








Examples:

integrator_mode.set_params(dt=0.007)
integrator_mode.set_params(dt=0.005, aniso=False)














	
class hoomd.md.integrate.nph(**params)

	NPH Integration via MTK barostat-thermostat..


	Parameters

	
	params – keyword arguments passed to npt.


	gamma – (float [https://docs.python.org/3/library/functions.html#float], units of energy): Damping factor for the box degrees of freedom








nph performs constant pressure (NPH) simulations using a Martyna-Tobias-Klein barostat, an
explicitly reversible and measure-preserving integration scheme. It allows for fully deformable simulation
cells and uses the same underlying integrator as npt (with nph=True).

The available options are identical to those of npt, except that kT cannot be specified.
For further information, refer to the documentation of npt.


Note

A time scale tauP for the relaxation of the barostat is required. This is defined as the
relaxation time the barostat would have at an average temperature T_0 = 1, and it
is related to the internally used (Andersen) Barostat mass \(W\) via
\(W=d N T_0 \tau_P^2\), where \(d\) is the dimensionality and \(N\) the number
of particles.



nph is an integration method and must be used with mode_standard.

Examples:

# Triclinic unit cell
nph=integrate.nph(group=all, P=2.0, tauP=1.0, couple="none", all=True)
# Cubic unit cell
nph = integrate.nph(group=all, P=2.0, tauP=1.0)
# Relax the box
nph = integrate.nph(group=all, P=0, tauP=1.0, gamma=0.1)






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
randomize_velocities(kT, seed)

	Assign random velocities and angular momenta to particles in the
group, sampling from the Maxwell-Boltzmann distribution. This method
considers the dimensionality of the system and particle anisotropy, and
removes drift (the center of mass velocity).


New in version 2.3.



Starting in version 2.5, randomize_velocities also chooses random values
for the internal integrator variables.


	Parameters

	
	kT (float [https://docs.python.org/3/library/functions.html#float]) – Temperature (in energy units)


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed









Note

Randomization is applied at the start of the next call to hoomd.run().



Example:

integrator = md.integrate.nph(group=group.all(), P=2.0, tauP=1.0)
integrator.randomize_velocities(kT=1.0, seed=42)
run(100)










	
set_params(kT=None, tau=None, S=None, P=None, tauP=None, rescale_all=None, gamma=None)

	Changes parameters of an existing integrator.


	Parameters

	
	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New temperature (if set) (in energy units)


	tau (float [https://docs.python.org/3/library/functions.html#float]) – New coupling constant (if set) (in time units)


	S (list [https://docs.python.org/3/library/stdtypes.html#list] of hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New stress components set point (if set) for the barostat (in pressure units). In Voigt notation: [Sxx, Syy, Szz, Syz, Sxz, Sxy]


	P (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New isotropic pressure set point (if set) for the barostat (in pressure units). Overrides S if set.


	tauP (float [https://docs.python.org/3/library/functions.html#float]) – New barostat coupling constant (if set) (in time units)


	rescale_all (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, rescale all particles, not only those in the group








Examples:

integrator.set_params(tau=0.6)
integrator.set_params(dt=3e-3, kT=2.0, P=1.0)














	
class hoomd.md.integrate.npt(group, kT=None, tau=None, S=None, P=None, tauP=None, couple='xyz', x=True, y=True, z=True, xy=False, xz=False, yz=False, all=False, nph=False, rescale_all=None, gamma=None)

	NPT Integration via MTK barostat-thermostat.


	Parameters

	
	group (hoomd.group) – Group of particles on which to apply this method.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature set point for the thermostat, not needed if nph=True (in energy units).


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Coupling constant for the thermostat, not needed if nph=True (in time units).


	S (list [https://docs.python.org/3/library/stdtypes.html#list] of hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Stress components set point for the barostat (in pressure units). In Voigt notation: [Sxx, Syy, Szz, Syz, Sxz, Sxy]


	P (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Isotropic pressure set point for the barostat (in pressure units). Overrides S if set.


	tauP (float [https://docs.python.org/3/library/functions.html#float]) – Coupling constant for the barostat (in time units).


	couple (str [https://docs.python.org/3/library/stdtypes.html#str]) – Couplings of diagonal elements of the stress tensor, can be “none”, “xy”, “xz”,”yz”, or “xyz” (default).


	x (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale Lx and x component of particle coordinates and velocities


	y (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale Ly and y component of particle coordinates and velocities


	z (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale Lz and z component of particle coordinates and velocities


	xy (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale xy tilt factor and x and y components of particle coordinates and velocities


	xz (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale xz tilt factor and x and z components of particle coordinates and velocities


	yz (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale yz tilt factor and y and z components of particle coordinates and velocities


	all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale all lengths and tilt factors and components of particle coordinates and velocities


	nph (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, integrate without a thermostat, i.e. in the NPH ensemble


	rescale_all (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, rescale all particles, not only those in the group


	gamma – (float [https://docs.python.org/3/library/functions.html#float]): Dimensionless damping factor for the box degrees of freedom (default: 0)








npt performs constant pressure, constant temperature simulations, allowing for a fully deformable
simulation box.

The integration method is based on the rigorous Martyna-Tobias-Klein equations of motion for NPT.
For optimal stability, the update equations leave the phase-space measure invariant and are manifestly
time-reversible.

By default, npt performs integration in a cubic box under hydrostatic pressure by simultaneously
rescaling the lengths Lx, Ly and Lz of the simulation box.

npt can also perform more advanced integration modes. The integration mode
is specified by a set of couplings and by specifying the box degrees of freedom that are put under
barostat control.

Couplings define which diagonal elements of the pressure tensor \(P_{\alpha,\beta}\)
should be averaged over, so that the corresponding box lengths are rescaled by the same amount.

Valid couplings are:


	none (all box lengths are updated independently)


	xy (Lx and Ly are coupled)


	xz (Lx and Lz are coupled)


	yz (Ly and Lz are coupled)


	xyz (Lx and Ly and Lz are coupled)




The default coupling is xyz, i.e. the ratios between all box lengths stay constant.

Degrees of freedom of the box specify which lengths and tilt factors of the box should be updated,
and how particle coordinates and velocities should be rescaled.

Valid keywords for degrees of freedom are:


	x (the box length Lx is updated)


	y (the box length Ly is updated)


	z (the box length Lz is updated)


	xy (the tilt factor xy is updated)


	xz (the tilt factor xz is updated)


	yz (the tilt factor yz is updated)


	all (all elements are updated, equivalent to x, y, z, xy, xz, and yz together)




Any of the six keywords can be combined together. By default, the x, y, and z degrees of freedom
are updated.


Note

If any of the diagonal x, y, z degrees of freedom is not being integrated, pressure tensor components
along that direction are not considered for the remaining degrees of freedom.



For example:


	Specifying xyz couplings and x, y, and z degrees of freedom amounts to cubic symmetry (default)


	Specifying xy couplings and x, y, and z degrees of freedom amounts to tetragonal symmetry.


	Specifying no couplings and all degrees of freedom amounts to a fully deformable triclinic unit cell




npt Can also apply a constant stress to the simulation box. To do so, specify the symmetric
stress tensor S instead of an isotropic pressure P.


Note

npt assumes that isotropic pressures are positive. Conventions for the stress tensor sometimes
assume negative values on the diagonal. You need to set these values negative manually in HOOMD.



npt is an integration method. It must be used with mode_standard.

npt uses the proper number of degrees of freedom to compute the temperature and pressure of the system in
both 2 and 3 dimensional systems, as long as the number of dimensions is set before the npt command
is specified.

For the MTK equations of motion, see:


	G. J. Martyna, D. J. Tobias, M. L. Klein  1994 [http://dx.doi.org/10.1063/1.467468]


	M. E. Tuckerman et. al. 2006 [http://dx.doi.org/10.1088/0305-4470/39/19/S18]


	T. Yu et. al. 2010 [http://dx.doi.org/10.1016/j.chemphys.2010.02.014]


	Glaser et. al (2013), to be published




Both kT and P can be variant types, allowing for temperature/pressure ramps in simulation runs.

\(\tau\) is related to the Nosé mass \(Q\) by


\[\tau = \sqrt{\frac{Q}{g k_B T_0}}\]

where \(g\) is the number of degrees of freedom, and \(k_B T_0\) is the set point (kT above).

A hoomd.compute.thermo is automatically specified and associated with group.

Examples:

integrate.npt(group=all, kT=1.0, tau=0.5, tauP=1.0, P=2.0)
integrator = integrate.npt(group=all, tau=1.0, kT=0.65, tauP = 1.2, P=2.0)
# orthorhombic symmetry
integrator = integrate.npt(group=all, tau=1.0, kT=0.65, tauP = 1.2, P=2.0, couple="none")
# tetragonal symmetry
integrator = integrate.npt(group=all, tau=1.0, kT=0.65, tauP = 1.2, P=2.0, couple="xy")
# triclinic symmetry
integrator = integrate.npt(group=all, tau=1.0, kT=0.65, tauP = 1.2, P=2.0, couple="none", rescale_all=True)






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
randomize_velocities(seed)

	Assign random velocities and angular momenta to particles in the
group, sampling from the Maxwell-Boltzmann distribution. This method
considers the dimensionality of the system and particle anisotropy, and
removes drift (the center of mass velocity).


New in version 2.3.



Starting in version 2.5, randomize_velocities also chooses random values
for the internal integrator variables.


	Parameters

	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed






Note

Randomization is applied at the start of the next call to hoomd.run().



Example:

integrator = md.integrate.npt(group=group.all(), kT=1.0, tau=0.5, tauP=1.0, P=2.0)
integrator.randomize_velocities(seed=42)
run(100)










	
set_params(kT=None, tau=None, S=None, P=None, tauP=None, rescale_all=None, gamma=None)

	Changes parameters of an existing integrator.


	Parameters

	
	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New temperature (if set) (in energy units)


	tau (float [https://docs.python.org/3/library/functions.html#float]) – New coupling constant (if set) (in time units)


	S (list [https://docs.python.org/3/library/stdtypes.html#list] of hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New stress components set point (if set) for the barostat (in pressure units). In Voigt notation: [Sxx, Syy, Szz, Syz, Sxz, Sxy]


	P (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New isotropic pressure set point (if set) for the barostat (in pressure units). Overrides S if set.


	tauP (float [https://docs.python.org/3/library/functions.html#float]) – New barostat coupling constant (if set) (in time units)


	rescale_all (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, rescale all particles, not only those in the group








Examples:

integrator.set_params(tau=0.6)
integrator.set_params(dt=3e-3, kT=2.0, P=1.0)














	
class hoomd.md.integrate.nve(group, limit=None, zero_force=False)

	NVE Integration via Velocity-Verlet


	Parameters

	
	group (hoomd.group) – Group of particles on which to apply this method.


	limit (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Enforce that no particle moves more than a distance of a limit in a single time step


	zero_force (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to true, particles in the a group are integrated forward in time with constant
velocity and any net force on them is ignored.








nve performs constant volume, constant energy simulations using the standard
Velocity-Verlet method. For poor initial conditions that include overlapping atoms, a
limit can be specified to the movement a particle is allowed to make in one time step.
After a few thousand time steps with the limit set, the system should be in a safe state
to continue with unconstrained integration.

Another use-case for nve is to fix the velocity of a certain group of particles. This can be achieved by
setting the velocity of those particles in the initial condition and setting the zero_force option to True
for that group. A True value for zero_force causes integrate.nve to ignore any net force on each particle and
integrate them forward in time with a constant velocity.


Note

With an active limit, Newton’s third law is effectively not obeyed and the system
can gain linear momentum. Activate the hoomd.md.update.zero_momentum updater during the limited nve
run to prevent this.



nve is an integration method. It must be used with mode_standard.

A hoomd.compute.thermo is automatically specified and associated with group.

Examples:

all = group.all()
integrate.nve(group=all)
integrator = integrate.nve(group=all)
typeA = group.type('A')
integrate.nve(group=typeA, limit=0.01)
integrate.nve(group=typeA, zero_force=True)






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
randomize_velocities(kT, seed)

	Assign random velocities and angular momenta to particles in the
group, sampling from the Maxwell-Boltzmann distribution. This method
considers the dimensionality of the system and particle anisotropy, and
removes drift (the center of mass velocity).


New in version 2.3.




	Parameters

	
	kT (float [https://docs.python.org/3/library/functions.html#float]) – Temperature (in energy units)


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed









Note

Randomization is applied at the start of the next call to hoomd.run().



Example:

integrator = md.integrate.nve(group=group.all())
integrator.randomize_velocities(kT=1.0, seed=42)
run(100)










	
set_params(limit=None, zero_force=None)

	Changes parameters of an existing integrator.


	Parameters

	
	limit (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) New limit value to set. Removes the limit if limit is False


	zero_force (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) New value for the zero force option








Examples:

integrator.set_params(limit=0.01)
integrator.set_params(limit=False)














	
class hoomd.md.integrate.nvt(group, kT, tau)

	NVT Integration via the Nosé-Hoover thermostat.


	Parameters

	
	group (hoomd.group) – Group of particles on which to apply this method.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature set point for the Nosé-Hoover thermostat. (in energy units).


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Coupling constant for the Nosé-Hoover thermostat. (in time units).








nvt performs constant volume, constant temperature simulations using the Nosé-Hoover thermostat,
using the MTK equations described in Refs. G. J. Martyna, D. J. Tobias, M. L. Klein  1994 [http://dx.doi.org/10.1063/1.467468] and
J. Cao, G. J. Martyna 1996 [http://dx.doi.org/10.1063/1.470959].

nvt is an integration method. It must be used in connection with mode_standard.

nvt uses the proper number of degrees of freedom to compute the temperature of the system in both
2 and 3 dimensional systems, as long as the number of dimensions is set before the integrate.nvt command
is specified.

\(\tau\) is related to the Nosé mass \(Q\) by


\[\tau = \sqrt{\frac{Q}{g k_B T_0}}\]

where \(g\) is the number of degrees of freedom, and \(k_B T_0\) is the set point (kT above).

kT can be a variant type, allowing for temperature ramps in simulation runs.

A hoomd.compute.thermo is automatically specified and associated with group.

Examples:

all = group.all()
integrate.nvt(group=all, kT=1.0, tau=0.5)
integrator = integrate.nvt(group=all, tau=1.0, kT=0.65)
typeA = group.type('A')
integrator = integrate.nvt(group=typeA, tau=1.0, kT=hoomd.variant.linear_interp([(0, 4.0), (1e6, 1.0)]))






	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
randomize_velocities(seed)

	Assign random velocities and angular momenta to particles in the
group, sampling from the Maxwell-Boltzmann distribution. This method
considers the dimensionality of the system and particle anisotropy, and
removes drift (the center of mass velocity).


New in version 2.3.



Starting in version 2.5, randomize_velocities also chooses random values
for the internal integrator variables.


	Parameters

	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random number seed






Note

Randomization is applied at the start of the next call to hoomd.run().



Example:

integrator = md.integrate.nvt(group=group.all(), kT=1.0, tau=0.5)
integrator.randomize_velocities(seed=42)
run(100)










	
set_params(kT=None, tau=None)

	Changes parameters of an existing integrator.


	Parameters

	
	kT (float [https://docs.python.org/3/library/functions.html#float]) – New temperature (if set) (in energy units)


	tau (float [https://docs.python.org/3/library/functions.html#float]) – New coupling constant (if set) (in time units)








Examples:

integrator.set_params(tau=0.6)
integrator.set_params(tau=0.7, kT=2.0)
















          

      

      

    

  

    
      
          
            
  
md.nlist

Overview







	md.nlist.cell

	Cell list based neighbor list



	md.nlist.stencil

	Cell list based neighbor list using stencils



	md.nlist.tree

	Bounding volume hierarchy based neighbor list.






Details

Neighbor list acceleration structures.

Neighbor lists accelerate pair force calculation by maintaining a list of particles within a cutoff radius.
Multiple pair forces can utilize the same neighbor list. Neighbors are included using a pairwise cutoff
\(r_\mathrm{cut}(i,j)\) that is the maximum of all \(r_\mathrm{cut}(i,j)\) set for the pair forces attached
to the list.

Multiple neighbor lists can be created to accelerate simulations where there is significant disparity in
\(r_\mathrm{cut}(i,j)\) between pair potentials. If one pair force has a cutoff radius much smaller than
another pair force, the pair force calculation for the short cutoff will be slowed down considerably because many
particles in the neighbor list will have to be read and skipped because they lie outside the shorter cutoff.

The simplest way to build a neighbor list is \(O(N^2)\): each particle loops over all other particles and only
includes those within the neighbor list cutoff. This algorithm is no longer implemented in HOOMD-blue because it is
slow and inefficient. Instead, three accelerated algorithms based on cell lists and bounding volume hierarchy trees
are implemented. The cell list implementation is usually fastest when the cutoff radius is similar between all pair forces
(smaller than 2:1 ratio). The stencil implementation is a different variant of the cell list, and its main use is when a
cell list would be faster than a tree but memory demands are too big. The tree implementation is faster when there is
large size disparity, but its performance has been improved to be only slightly slower than the cell list for many use
cases. Because the performance of these algorithms depends on your system and hardware, you should carefully test which
option is fastest for your simulation.

Particles can be excluded from the neighbor list based on certain criteria. Setting \(r_\mathrm{cut}(i,j) \le 0\)
will exclude this cross interaction from the neighbor list on build time. Particles can also be excluded by topology
or for belonging to the same rigid body (see nlist.reset_exclusions()). To support molecular structures,
the body flag can also be used to exclude particles that are not part of a rigid structure. All particles with
positive values of the body flag are considered part of a rigid body (see hoomd.md.constrain.rigid),
while the default value of -1 indicates that a particle is free. Any other negative value of the body flag indicates
that the particles are part of a floppy body; such particles are integrated
separately, but are automatically excluded from the neighbor list as well.

Examples:

nl_c = nlist.cell(check_period=1)
nl_t = nlist.tree(r_buff = 0.8)
lj1 = pair.lj(r_cut = 3.0, nlist=nl_c)
lj2 = pair.lj(r_cut = 10.0, nlist=nl_t)






	
class hoomd.md.nlist.cell(r_buff=0.4, check_period=1, d_max=None, dist_check=True, name=None, deterministic=False)

	Cell list based neighbor list


	Parameters

	
	r_buff (float [https://docs.python.org/3/library/functions.html#float]) – Buffer width.


	check_period (int [https://docs.python.org/3/library/functions.html#int]) – How often to attempt to rebuild the neighbor list.


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – The maximum diameter a particle will achieve, only used in conjunction with slj diameter shifting.


	dist_check (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable / disable distance checking.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name for this neighbor list instance.


	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, enable deterministic runs on the GPU by sorting the cell list.








cell creates a cell list based neighbor list object to which pair potentials can be attached for computing
non-bonded pairwise interactions. Cell listing allows for O(N) construction of the neighbor list. Particles are first
spatially sorted into cells based on the largest pairwise cutoff radius attached to this instance of the neighbor
list. Particles then query their adjacent cells, and neighbors are included based on pairwise cutoffs. This method
is very efficient for systems with nearly monodisperse cutoffs, but performance degrades for large cutoff radius
asymmetries due to the significantly increased number of particles per cell.

Use base class methods to change parameters (set_params), reset the exclusion list
(reset_exclusions) or tune r_buff (tune).

Examples:

nl_c = nlist.cell(check_period = 1)
nl_c.set_params(r_buff=0.5)
nl_c.reset_exclusions([]);
nl_c.tune()






Note

d_max should only be set when slj diameter shifting is required by a pair potential. Currently, slj
is the only pair potential requiring this shifting, and setting d_max for other potentials may lead to
significantly degraded performance or incorrect results.








	
class hoomd.md.nlist.nlist

	Base class neighbor list.

Methods provided by this base class are available to all subclasses.


	
add_exclusion(i, j)

	Add a specific pair of particles to the exclusion list.


	Parameters

	
	i (int [https://docs.python.org/3/library/functions.html#int]) – The tag of the first particle in the pair.


	j (int [https://docs.python.org/3/library/functions.html#int]) – The tag of the second particle in the pair.








Examples:

nl.add_exclusions(system.particles[0].tag, system.particles[1].tag)










	
query_update_period()

	Query the maximum possible check_period.

query_update_period() examines the counts of nlist rebuilds during the previous hoomd.run().
It returns s-1, where s is the smallest update period experienced during that time.
Use it after a medium-length warm up run with check_period=1 to determine what check_period to set
for production runs.


Warning

If the previous hoomd.run() was short, insufficient sampling may cause the queried update period
to be large enough to result in dangerous builds during longer runs. Unless you use a really long
warm up run, subtract an additional 1 from this when you set check_period for additional safety.








	
reset_exclusions(exclusions=None)

	Resets all exclusions in the neighborlist.


	Parameters

	exclusions (list [https://docs.python.org/3/library/stdtypes.html#list]) – Select which interactions should be excluded from the pair interaction calculation.





By default, the following are excluded from short range pair interactions”


	Directly bonded particles.


	Directly constrained particles.


	Particles that are in the same body (i.e. have the same body flag). Note that these bodies need not be rigid.




reset_exclusions allows the defaults to be overridden to add other exclusions or to remove
the exclusion for bonded or constrained particles.

Specify a list of desired types in the exclusions argument (or an empty list to clear all exclusions).
All desired exclusions have to be explicitly listed, i.e. ‘1-3’ does not imply ‘1-2’.

Valid types are:


	bond - Exclude particles that are directly bonded together.


	constraint - Exclude particles that are directly constrained.


	angle - Exclude the two outside particles in all defined angles.


	dihedral - Exclude the two outside particles in all defined dihedrals.


	pair - Exclude particles in all defined special pairs.


	body - Exclude particles that belong to the same body.




The following types are determined solely by the bond topology. Every chain of particles in the simulation
connected by bonds (1-2-3-4) will be subject to the following exclusions, if enabled, whether or not explicit
angles or dihedrals are defined:


	1-2  - Same as bond


	1-3  - Exclude particles connected with a sequence of two bonds.


	1-4  - Exclude particles connected with a sequence of three bonds.




Examples:

nl.reset_exclusions(exclusions = ['1-2'])
nl.reset_exclusions(exclusions = ['1-2', '1-3', '1-4'])
nl.reset_exclusions(exclusions = ['bond', 'angle'])
nl.reset_exclusions(exclusions = ['bond', 'angle','constraint'])
nl.reset_exclusions(exclusions = [])










	
set_params(r_buff=None, check_period=None, d_max=None, dist_check=True)

	Change neighbor list parameters.


	Parameters

	
	r_buff (float [https://docs.python.org/3/library/functions.html#float]) – (if set) changes the buffer radius around the cutoff (in distance units)


	check_period (int [https://docs.python.org/3/library/functions.html#int]) – (if set) changes the period (in time steps) between checks to see if the neighbor list
needs updating


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – (if set) notifies the neighbor list of the maximum diameter that a particle attain over the following
run() commands. (in distance units)


	dist_check (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to False, disable the distance checking logic and always regenerate the nlist every
check_period steps








set_params() changes one or more parameters of the neighbor list. r_buff and check_period
can have a significant effect on performance. As r_buff is made larger, the neighbor list needs
to be updated less often, but more particles are included leading to slower force computations.
Smaller values of r_buff lead to faster force computation, but more often neighbor list updates,
slowing overall performance again. The sweet spot for the best performance needs to be found by
experimentation. The default of r_buff = 0.4 works well in practice for Lennard-Jones liquid
simulations.

As r_buff is changed, check_period must be changed correspondingly. The neighbor list is updated
no sooner than check_period time steps after the last update. If check_period is set too high,
the neighbor list may not be updated when it needs to be.

For safety, the default check_period is 1 to ensure that the neighbor list is always updated when it
needs to be. Increasing this to an appropriate value for your simulation can lead to performance gains
of approximately 2 percent.

check_period should be set so that no particle
moves a distance more than r_buff/2.0 during a the check_period. If this occurs, a dangerous
build is counted and printed in the neighbor list statistics at the end of a hoomd.run().

When using hoomd.md.pair.slj, d_max MUST be set to the maximum diameter that a particle will
attain at any point during the following hoomd.run() commands (see hoomd.md.pair.slj for more
information). When using in conjunction, hoomd.md.pair.slj will
automatically set d_max for the nlist.  This can be overridden (e.g. if multiple potentials using diameters are used)
by using set_params() after the
hoomd.md.pair.slj class has been initialized.


Caution

When not using hoomd.md.pair.slj, d_max
MUST be left at the default value of 1.0 or the simulation will be incorrect if d_max is less than 1.0
and slower than necessary if d_max is greater than 1.0.



Examples:

nl.set_params(r_buff = 0.9)
nl.set_params(check_period = 11)
nl.set_params(r_buff = 0.7, check_period = 4)
nl.set_params(d_max = 3.0)










	
tune(warmup=200000, r_min=0.05, r_max=1.0, jumps=20, steps=5000, set_max_check_period=False, quiet=False)

	Make a series of short runs to determine the fastest performing r_buff setting.


	Parameters

	
	warmup (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to run() to warm up the benchmark


	r_min (float [https://docs.python.org/3/library/functions.html#float]) – Smallest value of r_buff to test


	r_max (float [https://docs.python.org/3/library/functions.html#float]) – Largest value of r_buff to test


	jumps (int [https://docs.python.org/3/library/functions.html#int]) – Number of different r_buff values to test


	steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to run() at each point


	set_max_check_period (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to enable automatic setting of the maximum nlist check_period


	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Quiet the individual run() calls.








tune() executes warmup time steps. Then it sets the nlist r_buff value to r_min and runs for
steps time steps. The TPS value is recorded, and the benchmark moves on to the next r_buff value
completing at r_max in jumps jumps. Status information is printed out to the screen, and the optimal
r_buff value is left set for further hoomd.run() calls to continue at optimal settings.

Each benchmark is repeated 3 times and the median value chosen. Then, warmup time steps are run again
at the optimal r_buff in order to determine the maximum value of check_period. In total,
(2*warmup + 3*jump*steps) time steps are run.


Note

By default, the maximum check_period is not set for safety. If you wish to have it set
when the call completes, call with the parameter set_max_check_period=True.




	Returns

	(optimal_r_buff, maximum check_period)














	
class hoomd.md.nlist.stencil(r_buff=0.4, check_period=1, d_max=None, dist_check=True, cell_width=None, name=None, deterministic=False)

	Cell list based neighbor list using stencils


	Parameters

	
	r_buff (float [https://docs.python.org/3/library/functions.html#float]) – Buffer width.


	check_period (int [https://docs.python.org/3/library/functions.html#int]) – How often to attempt to rebuild the neighbor list.


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – The maximum diameter a particle will achieve, only used in conjunction with slj diameter shifting.


	dist_check (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable / disable distance checking.


	cell_width (float [https://docs.python.org/3/library/functions.html#float]) – The underlying stencil bin width for the cell list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name for this neighbor list instance.


	deterministic (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, enable deterministic runs on the GPU by sorting the cell list.








stencil creates a cell list based neighbor list object to which pair potentials can be attached for computing
non-bonded pairwise interactions. Cell listing allows for O(N) construction of the neighbor list. Particles are first
spatially sorted into cells based on the largest pairwise cutoff radius attached to this instance of the neighbor
list.

M.P. Howard et al. 2016 [http://dx.doi.org/10.1016/j.cpc.2016.02.003] describes this neighbor list implementation
in HOOMD-blue. Cite it if you utilize this neighbor list style in your work.

This neighbor-list style differs from cell based on how the adjacent cells are searched for particles. The cell
list cell_width is set by default using the shortest active cutoff radius in the system. One stencil is computed
per particle type based on the largest cutoff radius that type participates in, which defines the bins that the
particle must search in. Distances to the bins in the stencil are precomputed so that certain particles can be
quickly excluded from the neighbor list, leading to improved performance compared to cell when there is size
disparity in the cutoff radius. The memory demands of stencil can also be lower than cell if your
system is large and has many small cells in it; however, tree is usually a better choice for these systems.

The performance of the stencil depends strongly on the choice of cell_width. The best performance is obtained
when the cutoff radii are multiples of the cell_width, and when the cell_width covers the simulation box with
a roughly integer number of cells. The cell_width can be set manually, or be automatically scanning through a range
of possible bin widths using tune_cell_width().

Examples:

nl_s = nlist.stencil(check_period = 1)
nl_s.set_params(r_buff=0.5)
nl_s.reset_exclusions([]);
nl_s.tune()
nl_s.tune_cell_width(min_width=1.5, max_width=3.0)






Note

d_max should only be set when slj diameter shifting is required by a pair potential. Currently, slj
is the only pair potential requiring this shifting, and setting d_max for other potentials may lead to
significantly degraded performance or incorrect results.




	
set_cell_width(cell_width)

	Set the cell width


	Parameters

	cell_width (float [https://docs.python.org/3/library/functions.html#float]) – New cell width.










	
tune_cell_width(warmup=200000, min_width=None, max_width=None, jumps=20, steps=5000)

	Make a series of short runs to determine the fastest performing bin width.


	Parameters

	
	warmup (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to run() to warm up the benchmark


	min_width (float [https://docs.python.org/3/library/functions.html#float]) – Minimum cell bin width to try


	max_width (float [https://docs.python.org/3/library/functions.html#float]) – Maximum cell bin width to try


	jumps (int [https://docs.python.org/3/library/functions.html#int]) – Number of different bin width to test


	steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of time steps to run() at each point








tune_cell_width() executes warmup time steps. Then it sets the nlist cell_width value to min_width and
runs for steps time steps. The TPS value is recorded, and the benchmark moves on to the next cell_width
value completing at max_width in jumps jumps. Status information is printed out to the screen, and the
optimal cell_width value is left set for further runs() to continue at optimal settings.

Each benchmark is repeated 3 times and the median value chosen. In total, (warmup + 3*jump*steps) time steps
are run.


	Returns

	The optimal cell width.














	
class hoomd.md.nlist.tree(r_buff=0.4, check_period=1, d_max=None, dist_check=True, name=None)

	Bounding volume hierarchy based neighbor list.


	Parameters

	
	r_buff (float [https://docs.python.org/3/library/functions.html#float]) – Buffer width.


	check_period (int [https://docs.python.org/3/library/functions.html#int]) – How often to attempt to rebuild the neighbor list.


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – The maximum diameter a particle will achieve, only used in conjunction with slj diameter shifting.


	dist_check (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to enable / disable distance checking.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name for this neighbor list instance.








tree creates a neighbor list using bounding volume hierarchy (BVH) tree traversal. Pair potentials are attached
for computing non-bonded pairwise interactions. A BVH tree of axis-aligned bounding boxes is constructed per particle
type, and each particle queries each tree to determine its neighbors. This method of searching leads to significantly
improved performance compared to cell lists in systems with moderate size asymmetry, but has slightly poorer performance
(10% slower) for monodisperse systems. tree can also be slower than cell if there are multiple
types in the system, but the cutoffs between types are identical. (This is because one BVH is created per type.)
The user should carefully benchmark neighbor list build times to select the appropriate neighbor list construction type.

M.P. Howard et al. 2016 [http://dx.doi.org/10.1016/j.cpc.2016.02.003] describes the original implementation of this
algorithm for HOOMD-blue. M.P. Howard et al. 2019 [https://doi.org/10.1016/j.commatsci.2019.04.004] describes the
improved algorithm that is currently implemented. Cite both if you utilize this neighbor list style in your work.

Examples:

nl_t = nlist.tree(check_period = 1)
nl_t.set_params(r_buff=0.5)
nl_t.reset_exclusions([]);
nl_t.tune()






Note

d_max should only be set when slj diameter shifting is required by a pair potential. Currently, slj
is the only pair potential requiring this shifting, and setting d_max for other potentials may lead to
significantly degraded performance or incorrect results.










          

      

      

    

  

    
      
          
            
  
md.pair

Overview







	md.pair.buckingham

	Buckingham pair potential.



	md.pair.dipole

	Screened dipole-dipole interactions.



	md.pair.dpd

	Dissipative Particle Dynamics.



	md.pair.dpdlj

	Dissipative Particle Dynamics with a LJ conservative force



	md.pair.dpd_conservative

	DPD Conservative pair force.



	md.pair.ewald

	Ewald pair potential.



	md.pair.force_shifted_lj

	Force-shifted Lennard-Jones pair potential.



	md.pair.fourier

	Fourier pair potential.



	md.pair.gauss

	Gaussian pair potential.



	md.pair.gb

	Gay-Berne anisotropic pair potential.



	md.pair.lj

	Lennard-Jones pair potential.



	md.pair.lj1208

	Lennard-Jones 12-8 pair potential.



	md.pair.mie

	Mie pair potential.



	md.pair.morse

	Morse pair potential.



	md.pair.moliere

	Moliere pair potential.



	md.pair.pair

	Common pair potential documentation.



	md.pair.reaction_field

	Onsager reaction field pair potential.



	md.pair.slj

	Shifted Lennard-Jones pair potential.



	md.pair.square_density

	Soft potential for simulating a van-der-Waals liquid



	md.pair.table

	Tabulated pair potential.



	md.pair.tersoff

	Tersoff Potential.



	md.pair.yukawa

	Yukawa pair potential.



	md.pair.zbl

	ZBL pair potential.






Details

Pair potentials.

Generally, pair forces are short range and are summed over all non-bonded particles
within a certain cutoff radius of each particle. Any number of pair forces
can be defined in a single simulation. The net force on each particle due to
all types of pair forces is summed.

Pair forces require that parameters be set for each unique type pair. Coefficients
are set through the aid of the coeff class. To set these coefficients, specify
a pair force and save it in a variable:

my_force = pair.some_pair_force(arguments...)





Then the coefficients can be set using the saved variable:

my_force.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
my_force.pair_coeff.set('A', 'B', epsilon=1.0, sigma=2.0)
my_force.pair_coeff.set('B', 'B', epsilon=2.0, sigma=1.0)





This example set the parameters epsilon and sigma
(which are used in lj). Different pair forces require that different
coefficients are set. Check the documentation of each to see the definition
of the coefficients.


	
class hoomd.md.pair.DLVO(r_cut, nlist, d_max=None, name=None)

	DLVO colloidal interaction

DLVO specifies that a DLVO dispersion and electrostatic interaction should be
applied between every non-excluded particle pair in the simulation.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – Maximum diameter particles in the simulation will have (in distance units)








DLVO evaluates the forces for the pair potential
.. math:

   V_{\mathrm{DLVO}}(r)  = & - \frac{A}{6} \left[
       \frac{2a_1a_2}{r^2 - (a_1+a_2)^2} + \frac{2a_1a_2}{r^2 - (a_1-a_2)^2}
       + \log \left( \frac{r^2 - (a_1+a_2)^2}{r^2 - (a_1+a_2)^2} \right) \right]
       + \frac{a_1 a_2}{a_1+a_2} Z e^{-\kappa(r - (a_1+a_2))} & r < (r_{\mathrm{cut}} + \Delta)
       = & 0 & r \ge (r_{\mathrm{cut}} + \Delta)

where math:`a_i` is the radius of particle :math:`i`, :math:`\Delta = (d_i + d_j)/2` and
:math:`d_i` is the diameter of particle :math:`i`.





The first term corresponds to the attractive van der Waals interaction with A being the Hamaker constant,
the second term to the repulsive double-layer interaction between two spherical surfaces with Z proportional
to the surface electric potential.

See Israelachvili 2011, pp. 317.

The DLVO potential does not need charge, but does need diameter. See slj for an explanation
on how diameters are handled in the neighbor lists.

Due to the way that DLVO modifies the cutoff condition, it will not function properly with the
xplor shifting mode. See pair for details on how forces are calculated and the available energy
shifting and smoothing modes.

Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in units of energy*distance)


	\(\kappa\) - kappa (in units of 1/distance)


	\(r_{\mathrm{cut}}\) - r_cut (in units of distance)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\) - r_on (in units of distance)
- optional: defaults to the global r_cut specified in the pair command





New in version 2.2.



Example:

nl = nlist.cell()
DLVO.pair_coeff.set('A', 'A', epsilon=1.0, kappa=1.0)
DLVO.pair_coeff.set('A', 'B', epsilon=2.0, kappa=0.5, r_cut=3.0, r_on=2.0);
DLVO.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=0.5, kappa=3.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.ai_pair(r_cut, nlist, name=None)

	Generic anisotropic pair potential.

Users should not instantiate ai_pair directly. It is a base class that
provides common features to all anisotropic pair forces. Rather than repeating all of that documentation in a
dozen different places, it is collected here.

All anisotropic pair potential commands specify that a given potential energy, force and torque be computed
on all non-excluded particle pairs in the system within a short range cutoff distance \(r_{\mathrm{cut}}\).
The interaction energy, forces and torque depend on the inter-particle separation
\(\vec r\) and on the orientations \(\vec q_i\), \(q_j\), of the particles.


	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff





valid values for mode are: “none” (the default) and “shift”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff




Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")










	
shape

	Get or set shape parameters per type.

In addition to any pair-specific parameters required to characterize a
pair potential, individual particles that have anisotropic interactions
may also have their own shapes that affect the potentials. General
anisotropic pair potentials may set per-particle shapes using this
method.










	
class hoomd.md.pair.buckingham(r_cut, nlist, name=None)

	Buckingham pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








buckingham specifies that a Buckingham pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{Buckingham}}(r)  = & A \exp\left(-\frac{r}{\rho}\right) -
                  \frac{C}{r^6} & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(A\) - A (in energy units)


	\(\rho\) - rho (in distance units)


	\(C\) - C (in energy * distance**6 units )


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command





New in version 2.2.




Changed in version 2.2.



Example:

nl = nlist.cell()
buck = pair.buckingham(r_cut=3.0, nlist=nl)
buck.pair_coeff.set('A', 'A', A=1.0, rho=1.0, C=1.0)
buck.pair_coeff.set('A', 'B', A=2.0, rho=1.0, C=1.0, r_cut=3.0, r_on=2.0);
buck.pair_coeff.set('B', 'B', A=1.0, rho=1.0, C=1.0, r_cut=2**(1.0/6.0), r_on=2.0);
buck.pair_coeff.set(['A', 'B'], ['C', 'D'], A=1.5, rho=2.0, C=1.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.coeff

	Define pair coefficients

All pair forces use coeff to specify the coefficients between different
pairs of particles indexed by type. The set of pair coefficients is a symmetric
matrix defined over all possible pairs of particle types.

There are two ways to set the coefficients for a particular pair force.
The first way is to save the pair force in a variable and call set() directly.

The second method is to build the coeff class first and then assign it to the
pair force. There are some advantages to this method in that you could specify a
complicated set of pair coefficients in a separate python file and import it into
your job script.

Example (force_field.py):

from hoomd import md
my_coeffs = md.pair.coeff();
my_force.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
my_force.pair_coeff.set('A', 'B', epsilon=1.0, sigma=2.0)
my_force.pair_coeff.set('B', 'B', epsilon=2.0, sigma=1.0)





Example job script:

from hoomd import md
import force_field

.....
my_force = md.pair.some_pair_force(arguments...)
my_force.pair_coeff = force_field.my_coeffs






	
set(a, b, **coeffs)

	Sets parameters for one type pair.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – First particle type in the pair (or a list of type names)


	b (str [https://docs.python.org/3/library/stdtypes.html#str]) – Second particle type in the pair (or a list of type names)


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a single type pair
or set of type pairs.
Particle types are identified by name, and parameters are also added by name.
Which parameters you need to specify depends on the pair force you are setting
these coefficients for, see the corresponding documentation.

All possible type pairs as defined in the simulation box must be specified before
executing hoomd.run(). You will receive an error if you fail to do so. It is not an error,
however, to specify coefficients for particle types that do not exist in the simulation.
This can be useful in defining a force field for many different types of particles even
when some simulations only include a subset.

There is no need to specify coefficients for both pairs ‘A’, ‘B’ and ‘B’, ‘A’. Specifying
only one is sufficient.

To set the same coefficients between many particle types, provide a list of type names instead of a single
one. All pairs between the two lists will be set to the same parameters.

Examples:

coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
coeff.set('B', 'B', epsilon=2.0, sigma=1.0)
coeff.set('A', 'B', epsilon=1.5, sigma=1.0)
coeff.set(['A', 'B', 'C', 'D'], 'F', epsilon=2.0)
coeff.set(['A', 'B', 'C', 'D'], ['A', 'B', 'C', 'D'], epsilon=1.0)

system = init.read_xml('init.xml')
coeff.set(system.particles.types, system.particles.types, epsilon=2.0)
coeff.set('A', system.particles.types, epsilon=1.2)






Note

Single parameters can be updated. If both epsilon and sigma have already been
set for a type pair, then executing coeff.set('A', 'B', epsilon=1.1) will update
the value of epsilon and leave sigma as it was previously set.



Some pair potentials assign default values to certain parameters. If the default setting for a given coefficient
(as documented in the respective pair command) is not set explicitly, the default will be used.










	
class hoomd.md.pair.dipole(r_cut, nlist, name=None)

	Screened dipole-dipole interactions.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








dipole computes the (screened) interaction between pairs of
particles with dipoles and electrostatic charges. The total energy
computed is:


\[ \begin{align}\begin{aligned}U_{dipole} = U_{dd} + U_{de} + U_{ee}\\U_{dd} = A e^{-\kappa r} \left(\frac{\vec{\mu_i}\cdot\vec{\mu_j}}{r^3} - 3\frac{(\vec{\mu_i}\cdot \vec{r_{ji}})(\vec{\mu_j}\cdot \vec{r_{ji}})}{r^5}\right)\\U_{de} = A e^{-\kappa r} \left(\frac{(\vec{\mu_j}\cdot \vec{r_{ji}})q_i}{r^3} - \frac{(\vec{\mu_i}\cdot \vec{r_{ji}})q_j}{r^3}\right)\\U_{ee} = A e^{-\kappa r} \frac{q_i q_j}{r}\end{aligned}\end{align} \]

Use pair_coeff.set to set potential coefficients.
dipole does not implement and energy shift / smoothing modes due to the function of the force.

The following coefficients must be set per unique pair of particle types:


	mu - magnitude of \(\vec{\mu} = \mu (1, 0, 0)\) in the particle local reference frame


	A - electrostatic energy scale \(A\) (default value 1.0)


	kappa - inverse screening length \(\kappa\)




Example:

# A/A interact only with screened electrostatics
dipole.pair_coeff.set('A', 'A', mu=0.0, A=1.0, kappa=1.0)
dipole.pair_coeff.set('A', 'B', mu=0.5, kappa=1.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(*args, **kwargs)

	dipole has no energy shift modes






	
shape

	Get or set shape parameters per type.

In addition to any pair-specific parameters required to characterize a
pair potential, individual particles that have anisotropic interactions
may also have their own shapes that affect the potentials. General
anisotropic pair potentials may set per-particle shapes using this
method.










	
class hoomd.md.pair.dpd(r_cut, nlist, kT, seed, name=None)

	Dissipative Particle Dynamics.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of thermostat (in energy units).


	seed (int [https://docs.python.org/3/library/functions.html#int]) – seed for the PRNG in the DPD thermostat.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








dpd specifies that a DPD pair force should be applied between every
non-excluded particle pair in the simulation, including an interaction potential,
pairwise drag force, and pairwise random force. See Groot and Warren 1997 [http://dx.doi.org/10.1063/1.474784].


\begin{eqnarray*}
F =   F_{\mathrm{C}}(r) + F_{\mathrm{R,ij}}(r_{ij}) +  F_{\mathrm{D,ij}}(v_{ij}) \\
\end{eqnarray*}

\begin{eqnarray*}
F_{\mathrm{C}}(r) = & A \cdot  w(r_{ij}) \\
F_{\mathrm{R, ij}}(r_{ij}) = & - \theta_{ij}\sqrt{3} \sqrt{\frac{2k_b\gamma T}{\Delta t}}\cdot w(r_{ij})  \\
F_{\mathrm{D, ij}}(r_{ij}) = & - \gamma w^2(r_{ij})\left( \hat r_{ij} \circ v_{ij} \right)  \\
\end{eqnarray*}

\begin{eqnarray*}
w(r_{ij}) = &\left( 1 - r/r_{\mathrm{cut}} \right)  & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
where \(\hat r_{ij}\) is a normalized vector from particle i to particle j, \(v_{ij} = v_i - v_j\),
and \(\theta_{ij}\) is a uniformly distributed random number in the range [-1, 1].

dpd generates random numbers by hashing together the particle tags in the pair, the user seed,
and the current time step index.


Attention

Change the seed if you reset the simulation time step to 0. If you keep the same seed, the simulation
will continue with the same sequence of random numbers used previously and may cause unphysical correlations.

For MPI runs: all ranks other than 0 ignore the seed input and use the value of rank 0.



C. L. Phillips et. al. 2011 [http://dx.doi.org/10.1016/j.jcp.2011.05.021] describes the DPD implementation
details in HOOMD-blue. Cite it if you utilize the DPD functionality in your work.

dpd does not implement and energy shift / smoothing modes due to the function of the force.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(A\) - A (in force units)


	\(\gamma\) - gamma (in units of force/velocity)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command




To use the DPD thermostat, an hoomd.md.integrate.nve integrator must be applied to the system and
the user must specify a temperature.  Use of the dpd thermostat pair force with other integrators will result
in unphysical behavior. To use pair.dpd with a different conservative potential than \(F_C\),
set A to zero and define the conservative pair potential separately.  Note that DPD thermostats
are often defined in terms of \(\sigma\) where \(\sigma = \sqrt{2k_b\gamma T}\).

Example:

nl = nlist.cell()
dpd = pair.dpd(r_cut=1.0, nlist=nl, kT=1.0, seed=0)
dpd.pair_coeff.set('A', 'A', A=25.0, gamma = 4.5)
dpd.pair_coeff.set('A', 'B', A=40.0, gamma = 4.5)
dpd.pair_coeff.set('B', 'B', A=25.0, gamma = 4.5)
dpd.pair_coeff.set(['A', 'B'], ['C', 'D'], A=12.0, gamma = 1.2)
dpd.set_params(kT = 1.0)
integrate.mode_standard(dt=0.02)
integrate.nve(group=group.all())






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(kT=None)

	Changes parameters.


	Parameters

	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of thermostat (in energy units).





Example:

dpd.set_params(kT=2.0)














	
class hoomd.md.pair.dpd_conservative(r_cut, nlist, name=None)

	DPD Conservative pair force.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








dpd_conservative specifies the conservative part of the DPD pair potential should be applied between
every non-excluded particle pair in the simulation. No thermostat (e.g. Drag Force and Random Force) is applied,
as is in dpd.


\begin{eqnarray*}
V_{\mathrm{DPD-C}}(r)  = & A \cdot \left( r_{\mathrm{cut}} - r \right)
                       - \frac{1}{2} \cdot \frac{A}{r_{\mathrm{cut}}} \cdot \left(r_{\mathrm{cut}}^2 - r^2 \right)
                              & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
dpd_conservative does not implement and energy shift / smoothing modes due to the function of the force.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(A\) - A (in force units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
dpdc = pair.dpd_conservative(r_cut=3.0, nlist=nl)
dpdc.pair_coeff.set('A', 'A', A=1.0)
dpdc.pair_coeff.set('A', 'B', A=2.0, r_cut = 1.0)
dpdc.pair_coeff.set('B', 'B', A=1.0)
dpdc.pair_coeff.set(['A', 'B'], ['C', 'D'], A=5.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(coeff)

	dpd_conservative has no energy shift modes










	
class hoomd.md.pair.dpdlj(r_cut, nlist, kT, seed, name=None)

	Dissipative Particle Dynamics with a LJ conservative force


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature of thermostat (in energy units).


	seed (int [https://docs.python.org/3/library/functions.html#int]) – seed for the PRNG in the DPD thermostat.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








dpdlj specifies that a DPD thermostat and a Lennard-Jones pair potential should be applied between
every non-excluded particle pair in the simulation.

C. L. Phillips et. al. 2011 [http://dx.doi.org/10.1016/j.jcp.2011.05.021] describes the DPD implementation
details in HOOMD-blue. Cite it if you utilize the DPD functionality in your work.


\begin{eqnarray*}
F =   F_{\mathrm{C}}(r) + F_{\mathrm{R,ij}}(r_{ij}) +  F_{\mathrm{D,ij}}(v_{ij}) \\
\end{eqnarray*}

\begin{eqnarray*}
F_{\mathrm{C}}(r) = & \partial V_{\mathrm{LJ}} / \partial r \\
F_{\mathrm{R, ij}}(r_{ij}) = & - \theta_{ij}\sqrt{3} \sqrt{\frac{2k_b\gamma T}{\Delta t}}\cdot w(r_{ij})  \\
F_{\mathrm{D, ij}}(r_{ij}) = & - \gamma w^2(r_{ij})\left( \hat r_{ij} \circ v_{ij} \right)  \\
\end{eqnarray*}

\begin{eqnarray*}
V_{\mathrm{LJ}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                  \alpha \left( \frac{\sigma}{r} \right)^{6} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}

\begin{eqnarray*}
w(r_{ij}) = &\left( 1 - r/r_{\mathrm{cut}} \right)  & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
where \(\hat r_{ij}\) is a normalized vector from particle i to particle j, \(v_{ij} = v_i - v_j\),
and \(\theta_{ij}\) is a uniformly distributed random number in the range [-1, 1].

Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless)
- optional: defaults to 1.0


	\(\gamma\) - gamma (in units of force/velocity)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command




To use the DPD thermostat, an hoomd.md.integrate.nve integrator must be applied to the system and
the user must specify a temperature.  Use of the dpd thermostat pair force with other integrators will result
in unphysical behavior.

Example:

nl = nlist.cell()
dpdlj = pair.dpdlj(r_cut=2.5, nlist=nl, kT=1.0, seed=0)
dpdlj.pair_coeff.set('A', 'A', epsilon=1.0, sigma = 1.0, gamma = 4.5)
dpdlj.pair_coeff.set('A', 'B', epsilon=0.0, sigma = 1.0 gamma = 4.5)
dpdlj.pair_coeff.set('B', 'B', epsilon=1.0, sigma = 1.0 gamma = 4.5, r_cut = 2.0**(1.0/6.0))
dpdlj.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon = 3.0,sigma=1.0, gamma = 1.2)
dpdlj.set_params(T = 1.0)
integrate.mode_standard(dt=0.005)
integrate.nve(group=group.all())






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(kT=None, mode=None)

	Changes parameters.


	Parameters

	
	T (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature (if set) (in energy units)


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – energy shift/smoothing mode (default noshift).








Examples:

dpdlj.set_params(kT=variant.linear_interp(points = [(0, 1.0), (1e5, 2.0)]))
dpdlj.set_params(kT=2.0, mode="shift")














	
class hoomd.md.pair.ewald(r_cut, nlist, name=None)

	Ewald pair potential.

ewald specifies that a Ewald pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
 V_{\mathrm{ewald}}(r)  = & q_i q_j \left[\mathrm{erfc}\left(\kappa r + \frac{\alpha}{2\kappa}\right) \exp(\alpha r)+
                            \mathrm{erfc}\left(\kappa r - \frac{\alpha}{2 \kappa}\right) \exp(-\alpha r)\right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
The Ewald potential is designed to be used in conjunction with hoomd.md.charge.pppm.

See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\kappa\) - kappa (Splitting parameter, in 1/distance units)


	
	\(\alpha\) - alpha (Debye screening length, in 1/distance units)

	
New in version 2.1.









	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
ewald = pair.ewald(r_cut=3.0, nlist=nl)
ewald.pair_coeff.set('A', 'A', kappa=1.0)
ewald.pair_coeff.set('A', 'A', kappa=1.0, alpha=1.5)
ewald.pair_coeff.set('A', 'B', kappa=1.0, r_cut=3.0, r_on=2.0);






Warning

DO NOT use in conjunction with hoomd.md.charge.pppm. It automatically creates and configures
ewald for you.




	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(coeff)

	ewald has no energy shift modes










	
class hoomd.md.pair.force_shifted_lj(r_cut, nlist, name=None)

	Force-shifted Lennard-Jones pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








force_shifted_lj specifies that a modified Lennard-Jones pair force should be applied between
non-excluded particle pair in the simulation. The force differs from the one calculated by  lj
by the subtraction of the value of the force at \(r_{\mathrm{cut}}\), such that the force smoothly goes
to zero at the cut-off. The potential is modified by a linear function. This potential can be used as a substitute
for lj, when the exact analytical form of the latter is not required but a smaller cut-off radius is
desired for computational efficiency. See Toxvaerd et. al. 2011 [http://dx.doi.org/10.1063/1.3558787]
for a discussion of this potential.


\begin{eqnarray*}
V(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                  \alpha \left( \frac{\sigma}{r} \right)^{6} \right] + \Delta V(r) & r < r_{\mathrm{cut}}\\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}

\[\Delta V(r) = -(r - r_{\mathrm{cut}}) \frac{\partial V_{\mathrm{LJ}}}{\partial r}(r_{\mathrm{cut}})\]

See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless) - optional: defaults to 1.0


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
fslj = pair.force_shifted_lj(r_cut=1.5, nlist=nl)
fslj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.fourier(r_cut, nlist, name=None)

	Fourier pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








fourier specifies that a fourier series form potential.


\begin{eqnarray*}
V_{\mathrm{Fourier}}(r) = & \frac{1}{r^{12}} + \frac{1}{r^2}\sum_{n=1}^4 [a_n cos(\frac{n \pi r}{r_{cut}}) + b_n sin(\frac{n \pi r}{r_{cut}})] & r < r_{\mathrm{cut}}  \\
                        = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}

where:
\begin{eqnarray*}
a_1 = \sum_{n=2}^4 (-1)^n a_n cos(\frac{n \pi r}{r_{cut}})
\end{eqnarray*}

\begin{eqnarray*}
b_1 = \sum_{n=2}^4 n (-1)^n b_n cos(\frac{n \pi r}{r_{cut}})
\end{eqnarray*}

is calculated to enforce close to zero value at r_cut.
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(a\) - a (array of 3 values corresponding to a2, a3 and a4 in the Fourier series, unitless)


	\(a\) - b (array of 3 values corresponding to b2, b3 and b4 in the Fourier series, unitless)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
fourier = pair.fourier(r_cut=3.0, nlist=nl)
fourier.pair_coeff.set('A', 'A', a=[a2,a3,a4], b=[b2,b3,b4])






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.gauss(r_cut, nlist, name=None)

	Gaussian pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








gauss specifies that a Gaussian pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{gauss}}(r)  = & \varepsilon \exp \left[ -\frac{1}{2}\left( \frac{r}{\sigma} \right)^2 \right]
                                        & r < r_{\mathrm{cut}} \\
                       = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
gauss = pair.gauss(r_cut=3.0, nlist=nl)
gauss.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
gauss.pair_coeff.set('A', 'B', epsilon=2.0, sigma=1.0, r_cut=3.0, r_on=2.0);
gauss.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=3.0, sigma=0.5)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.gb(r_cut, nlist, name=None)

	Gay-Berne anisotropic pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








gb computes the Gay-Berne potential between anisotropic particles.

This version of the Gay-Berne potential supports identical pairs of uniaxial ellipsoids,
with orientation-independent energy-well depth.

The interaction energy for this anisotropic pair potential is
(Allen et. al. 2006 [http://dx.doi.org/10.1080/00268970601075238]):


\begin{eqnarray*}
V_{\mathrm{GB}}(\vec r, \vec e_i, \vec e_j)  = & 4 \varepsilon \left[ \zeta^{-12} -
                      \zeta^{-6} \right] & \zeta < \zeta_{\mathrm{cut}} \\
                    = & 0 & \zeta \ge \zeta_{\mathrm{cut}} \\
\end{eqnarray*}

\[ \begin{align}\begin{aligned}\zeta = \left(\frac{r-\sigma+\sigma_{\mathrm{min}}}{\sigma_{\mathrm{min}}}\right)\\\sigma^{-2} = \frac{1}{2} \hat{\vec{r}}\cdot\vec{H^{-1}}\cdot\hat{\vec{r}}\\\vec{H} = 2 \ell_\perp^2 \vec{1} + (\ell_\parallel^2 - \ell_\perp^2) (\vec{e_i} \otimes \vec{e_i} + \vec{e_j} \otimes \vec{e_j})\end{aligned}\end{align} \]

with \(\sigma_{\mathrm{min}} = 2 \min(\ell_\perp, \ell_\parallel)\).

The cut-off parameter \(r_{\mathrm{cut}}\) is defined for two particles oriented parallel along
the long axis, i.e.
\(\zeta_{\mathrm{cut}} = \left(\frac{r-\sigma_{\mathrm{max}} + \sigma_{\mathrm{min}}}{\sigma_{\mathrm{min}}}\right)\)
where \(\sigma_{\mathrm{max}} = 2 \max(\ell_\perp, \ell_\parallel)\) .

The quantities \(\ell_\parallel\) and \(\ell_\perp\) denote the semi-axis lengths parallel
and perpendicular to particle orientation.

Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\ell_\perp\) - lperp (in distance units)


	\(\ell_\parallel\) - lpar (in distance units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
gb = pair.gb(r_cut=2.5, nlist=nl)
gb.pair_coeff.set('A', 'A', epsilon=1.0, lperp=0.45, lpar=0.5)
gb.pair_coeff.set('A', 'B', epsilon=2.0, lperp=0.45, lpar=0.5, r_cut=2**(1.0/6.0));






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Example

>>> my_gb.get_type_shapes()
[{'type': 'Ellipsoid', 'a': 1.0, 'b': 1.0, 'c': 1.5}]






	Returns

	A list of dictionaries, one for each particle type in the system.










	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff





valid values for mode are: “none” (the default) and “shift”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff




Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")










	
shape

	Get or set shape parameters per type.

In addition to any pair-specific parameters required to characterize a
pair potential, individual particles that have anisotropic interactions
may also have their own shapes that affect the potentials. General
anisotropic pair potentials may set per-particle shapes using this
method.










	
class hoomd.md.pair.lj(r_cut, nlist, name=None)

	Lennard-Jones pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








lj specifies that a Lennard-Jones pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{LJ}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                  \alpha \left( \frac{\sigma}{r} \right)^{6} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless) - optional: defaults to 1.0


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
lj = pair.lj(r_cut=3.0, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
lj.pair_coeff.set('A', 'B', epsilon=2.0, sigma=1.0, alpha=0.5, r_cut=3.0, r_on=2.0);
lj.pair_coeff.set('B', 'B', epsilon=1.0, sigma=1.0, r_cut=2**(1.0/6.0), r_on=2.0);
lj.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=1.5, sigma=2.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.lj1208(r_cut, nlist, name=None)

	Lennard-Jones 12-8 pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








lj1208 specifies that a Lennard-Jones pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{LJ}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                  \alpha \left( \frac{\sigma}{r} \right)^{8} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless) - optional: defaults to 1.0


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command





New in version 2.2.




Changed in version 2.2.



Example:

nl = nlist.cell()
lj1208 = pair.lj1208(r_cut=3.0, nlist=nl)
lj1208.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
lj1208.pair_coeff.set('A', 'B', epsilon=2.0, sigma=1.0, alpha=0.5, r_cut=3.0, r_on=2.0);
lj1208.pair_coeff.set('B', 'B', epsilon=1.0, sigma=1.0, r_cut=2**(1.0/6.0), r_on=2.0);
lj1208.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=1.5, sigma=2.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.mie(r_cut, nlist, name=None)

	Mie pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








mie specifies that a Mie pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{mie}}(r)  = & \left( \frac{n}{n-m} \right) {\left( \frac{n}{m} \right)}^{\frac{m}{n-m}} \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{n} -
                  \left( \frac{\sigma}{r} \right)^{m} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(n\) - n (unitless)


	\(m\) - m (unitless)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
mie = pair.mie(r_cut=3.0, nlist=nl)
mie.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0, n=12, m=6)
mie.pair_coeff.set('A', 'B', epsilon=2.0, sigma=1.0, n=14, m=7, r_cut=3.0, r_on=2.0);
mie.pair_coeff.set('B', 'B', epsilon=1.0, sigma=1.0, n=15.1, m=6.5, r_cut=2**(1.0/6.0), r_on=2.0);
mie.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=1.5, sigma=2.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.moliere(r_cut, nlist, name=None)

	Moliere pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








moliere specifies that a Moliere type pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{Moliere}}(r) = & \frac{Z_i Z_j e^2}{4 \pi \epsilon_0 r_{ij}} \left[ 0.35 \exp \left( -0.3 \frac{r_{ij}}{a_F} \right) + 0.55 \exp \left( -1.2 \frac{r_{ij}}{a_F} \right) + 0.10 \exp \left( -6.0 \frac{r_{ij}}{a_F} \right) \right] & r < r_{\mathrm{cut}} \\
                        = & 0 & r > r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(Z_i\) - Z_i - Atomic number of species i (unitless)


	\(Z_j\) - Z_j - Atomic number of species j (unitless)


	\(e\) - elementary_charge - The elementary charge (in charge units)


	\(a_0\) - a_0 - The Bohr radius (in distance units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
moliere = pair.moliere(r_cut = 3.0, nlist=nl)
moliere.pair_coeff.set('A', 'B', Z_i = 54.0, Z_j = 7.0, elementary_charge = 1.0, a_0 = 1.0);






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.morse(r_cut, nlist, name=None)

	Morse pair potential.

morse specifies that a Morse pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{morse}}(r)  = & D_0 \left[ \exp \left(-2\alpha\left(r-r_0\right)\right) -2\exp \left(-\alpha\left(r-r_0\right)\right) \right] & r < r_{\mathrm{cut}} \\
                       = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(D_0\) - D0, depth of the potential at its minimum (in energy units)


	\(\alpha\) - alpha, controls the width of the potential well (in units of 1/distance)


	\(r_0\) - r0, position of the minimum (in distance units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
morse = pair.morse(r_cut=3.0, nlist=nl)
morse.pair_coeff.set('A', 'A', D0=1.0, alpha=3.0, r0=1.0)
morse.pair_coeff.set('A', 'B', D0=1.0, alpha=3.0, r0=1.0, r_cut=3.0, r_on=2.0);
morse.pair_coeff.set(['A', 'B'], ['C', 'D'], D0=1.0, alpha=3.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.pair(r_cut, nlist, name=None)

	Common pair potential documentation.

Users should not invoke pair directly. It is a base command that provides common
features to all standard pair forces. Common documentation for all pair potentials is documented here.

All pair force commands specify that a given potential energy and force be computed on all non-excluded particle
pairs in the system within a short range cutoff distance \(r_{\mathrm{cut}}\).

The force \(\vec{F}\) applied between each pair of particles is:


\begin{eqnarray*}
\vec{F}  = & -\nabla V(r) & r < r_{\mathrm{cut}} \\
          = & 0           & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
where \(\vec{r}\) is the vector pointing from one particle to the other in the pair, and \(V(r)\) is
chosen by a mode switch (see set_params()):


\begin{eqnarray*}
V(r)  = & V_{\mathrm{pair}}(r) & \mathrm{mode\ is\ no\_shift} \\
      = & V_{\mathrm{pair}}(r) - V_{\mathrm{pair}}(r_{\mathrm{cut}}) & \mathrm{mode\ is\ shift} \\
      = & S(r) \cdot V_{\mathrm{pair}}(r) & \mathrm{mode\ is\ xplor\ and\ } r_{\mathrm{on}} < r_{\mathrm{cut}} \\
      = & V_{\mathrm{pair}}(r) - V_{\mathrm{pair}}(r_{\mathrm{cut}}) & \mathrm{mode\ is\ xplor\ and\ } r_{\mathrm{on}} \ge r_{\mathrm{cut}}
\end{eqnarray*}
\(S(r)\) is the XPLOR smoothing function:


\begin{eqnarray*}
S(r) = & 1 & r < r_{\mathrm{on}} \\
     = & \frac{(r_{\mathrm{cut}}^2 - r^2)^2 \cdot (r_{\mathrm{cut}}^2 + 2r^2 -
         3r_{\mathrm{on}}^2)}{(r_{\mathrm{cut}}^2 - r_{\mathrm{on}}^2)^3}
       & r_{\mathrm{on}} \le r \le r_{\mathrm{cut}} \\
     = & 0 & r > r_{\mathrm{cut}} \\
 \end{eqnarray*}
and \(V_{\mathrm{pair}}(r)\) is the specific pair potential chosen by the respective command.

Enabling the XPLOR smoothing function \(S(r)\) results in both the potential energy and the force going smoothly
to 0 at \(r = r_{\mathrm{cut}}\), reducing the rate of energy drift in long simulations.
\(r_{\mathrm{on}}\) controls the point at which the smoothing starts, so it can be set to only slightly modify
the tail of the potential. It is suggested that you plot your potentials with various values of
\(r_{\mathrm{on}}\) in order to find a good balance between a smooth potential function and minimal modification
of the original \(V_{\mathrm{pair}}(r)\). A good value for the LJ potential is
\(r_{\mathrm{on}} = 2 \cdot \sigma\).

The split smoothing / shifting of the potential when the mode is xplor is designed for use in mixed WCA / LJ
systems. The WCA potential and it’s first derivative already go smoothly to 0 at the cutoff, so there is no need
to apply the smoothing function. In such mixed systems, set \(r_{\mathrm{on}}\) to a value greater than
\(r_{\mathrm{cut}}\) for those pairs that interact via WCA in order to enable shifting of the WCA potential
to 0 at the cutoff.

The following coefficients must be set per unique pair of particle types. See hoomd.md.pair for information
on how to set coefficients:


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\) - r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




When \(r_{\mathrm{cut}} \le 0\) or is set to False, the particle type pair interaction is excluded from the neighbor
list. This mechanism can be used in conjunction with multiple neighbor lists to make efficient calculations in systems
with large size disparity. Functionally, this is equivalent to setting \(r_{\mathrm{cut}} = 0\) in the pair force
because negative \(r_{\mathrm{cut}}\) has no physical meaning.


	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.reaction_field(r_cut, nlist, name=None)

	Onsager reaction field pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








reaction_field specifies that an Onsager reaction field pair potential should be applied between every
non-excluded particle pair in the simulation.

Reaction field electrostatics is an approximation to the screened electrostatic interaction,
which assumes that the medium can be treated as an electrostatic continuum of dielectric
constant \(\epsilon_{RF}\) outside the cutoff sphere of radius \(r_{\mathrm{cut}}\).
See: Barker et. al. 1973 [http://dx.doi.org/10.1080/00268977300102101].


\[V_{\mathrm{RF}}(r) = \varepsilon \left[ \frac{1}{r} +
    \frac{(\epsilon_{RF}-1) r^2}{(2 \epsilon_{RF} + 1) r_c^3} \right]\]

By default, the reaction field potential does not require charge or diameter to be set. Two parameters,
\(\varepsilon\) and \(\epsilon_{RF}\) are needed. If \(epsilon_{RF}\) is specified as zero,
it will represent infinity.

If use_charge is set to True, the following formula is evaluated instead:
.. math:

V_{\mathrm{RF}}(r) = q_i q_j \varepsilon \left[ \frac{1}{r} +
    \frac{(\epsilon_{RF}-1) r^2}{(2 \epsilon_{RF} + 1) r_c^3} \right]





where \(q_i\) and \(q_j\) are the charges of the particle pair.

See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in units of energy*distance)


	\(\epsilon_{RF}\) - eps_rf (dimensionless)


	\(r_{\mathrm{cut}}\) - r_cut (in units of distance)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\) - r_on (in units of distance)
- optional: defaults to the global r_cut specified in the pair command


	use_charge (boolean), evaluate potential using particle charges
- optional: defaults to False





New in version 2.1.



Example:

nl = nlist.cell()
reaction_field = pair.reaction_field(r_cut=3.0, nlist=nl)
reaction_field.pair_coeff.set('A', 'A', epsilon=1.0, eps_rf=1.0)
reaction_field.pair_coeff.set('A', 'B', epsilon=-1.0, eps_rf=0.0)
reaction_field.pair_coeff.set('B', 'B', epsilon=1.0, eps_rf=0.0)
reaction_field.pair_coeff.set(system.particles.types, system.particles.types, epsilon=1.0, eps_rf=0.0, use_charge=True)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.slj(r_cut, nlist, d_max=None, name=None)

	Shifted Lennard-Jones pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – Maximum diameter particles in the simulation will have (in distance units)








slj specifies that a shifted Lennard-Jones type pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{SLJ}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r - \Delta} \right)^{12} -
                       \left( \frac{\sigma}{r - \Delta} \right)^{6} \right] & r < (r_{\mathrm{cut}} + \Delta) \\
                     = & 0 & r \ge (r_{\mathrm{cut}} + \Delta) \\
\end{eqnarray*}
where \(\Delta = (d_i + d_j)/2 - 1\) and \(d_i\) is the diameter of particle \(i\).

See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)
- optional: defaults to 1.0


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command





Attention

Due to the way that pair.slj modifies the cutoff criteria, a shift_mode of xplor is not supported.



The actual cutoff radius for pair.slj is shifted by the diameter of two particles interacting.  Thus to determine
the maximum possible actual r_cut in simulation
pair.slj must know the maximum diameter of all the particles over the entire run, d_max .
This value is either determined automatically from the initialization or can be set by the user and can be
modified between runs with hoomd.md.nlist.nlist.set_params(). In most cases, the correct value can be
identified automatically.

The specified value of d_max will be used to properly determine the neighbor lists during the following
hoomd.run() commands. If not specified, slj will set d_max to the largest diameter
in particle data at the time it is initialized.

If particle diameters change after initialization, it is imperative that d_max be the largest
diameter that any particle will attain at any time during the following hoomd.run() commands.
If d_max is smaller than it should be, some particles will effectively have a smaller value of r_cut
then was set and the simulation will be incorrect. d_max can be changed between runs by calling
hoomd.md.nlist.nlist.set_params().

Example:

nl = nlist.cell()
slj = pair.slj(r_cut=3.0, nlist=nl, d_max = 2.0)
slj.pair_coeff.set('A', 'A', epsilon=1.0)
slj.pair_coeff.set('A', 'B', epsilon=2.0, r_cut=3.0);
slj.pair_coeff.set('B', 'B', epsilon=1.0, r_cut=2**(1.0/6.0));
slj.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=2.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.

See pair.set_params().


Note

xplor is not a valid setting for slj.












	
class hoomd.md.pair.square_density(r_cut, nlist, name=None)

	Soft potential for simulating a van-der-Waals liquid


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








square_density specifies that the three-body potential should be applied to every
non-bonded particle pair in the simulation, that is harmonic in the local density.

The self energy per particle takes the form


\[\Psi^{ex} = B (\rho - A)^2\]

which gives a pair-wise additive, three-body force


\[\vec{f}_{ij} = \left( B (n_i - A) + B (n_j - A) \right) w'_{ij} \vec{e}_{ij}\]

Here, \(w_{ij}\) is a quadratic, normalized weighting function,


\[w(x) = \frac{15}{2 \pi r_{c,\mathrm{weight}}^3} (1-r/r_{c,\mathrm{weight}})^2\]

The local density at the location of particle i is defined as


\[n_i = \sum\limits_{j\neq i} w_{ij}\left(\big| \vec r_i - \vec r_j \big|\right)\]

The following coefficients must be set per unique pair of particle types:


	\(A\) - A (in units of volume^-1) - mean density (default: 0)


	\(B\) - B (in units of energy*volume^2) - coefficient of the harmonic density term




Example:

nl = nlist.cell()
sqd = pair.van_der_waals(r_cut=3.0, nlist=nl)
sqd.pair_coeff.set('A', 'A', A=0.1)
sqd.pair_coeff.set('A', 'A', B=1.0)





For further details regarding this multibody potential, see


Warning

Currently HOOMD does not support reverse force communication between MPI domains on the GPU.
Since reverse force communication is required for the calculation of multi-body potentials, attempting to use the
square_density potential on the GPU with MPI will result in an error.



[1] P. B. Warren, “Vapor-liquid coexistence in many-body dissipative particle dynamics”
Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., vol. 68, no. 6 Pt 2, p. 066702, 2003.


	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.table(width, nlist, name=None)

	Tabulated pair potential.


	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to use to interpolate V and F.


	nlist (hoomd.md.nlist) – Neighbor list (default of None automatically creates a global cell-list based neighbor list)


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance








table specifies that a tabulated pair potential should be applied between every
non-excluded particle pair in the simulation.

The force \(\vec{F}\) is (in force units):


\begin{eqnarray*}
\vec{F}(\vec{r})     = & 0                           & r < r_{\mathrm{min}} \\
                     = & F_{\mathrm{user}}(r)\hat{r} & r_{\mathrm{min}} \le r < r_{\mathrm{max}} \\
                     = & 0                           & r \ge r_{\mathrm{max}} \\
\end{eqnarray*}
and the potential \(V(r)\) is (in energy units)


\begin{eqnarray*}
V(r)       = & 0                    & r < r_{\mathrm{min}} \\
           = & V_{\mathrm{user}}(r) & r_{\mathrm{min}} \le r < r_{\mathrm{max}} \\
           = & 0                    & r \ge r_{\mathrm{max}} \\
\end{eqnarray*}
where \(\vec{r}\) is the vector pointing from one particle to the other in the pair.

\(F_{\mathrm{user}}(r)\) and \(V_{\mathrm{user}}(r)\) are evaluated on width grid points between
\(r_{\mathrm{min}}\) and \(r_{\mathrm{max}}\). Values are interpolated linearly between grid points.
For correctness, you must specify the force defined by: \(F = -\frac{\partial V}{\partial r}\).

The following coefficients must be set per unique pair of particle types:


	\(V_{\mathrm{user}}(r)\) and \(F_{\mathrm{user}}(r)\) - evaluated by func (see example)


	coefficients passed to func - coeff (see example)


	\(_{\mathrm{min}}\) - rmin (in distance units)


	\(_{\mathrm{max}}\) - rmax (in distance units)




Set table from a given function

When you have a functional form for V and F, you can enter that
directly into python. table will evaluate the given function over width points between
rmin and rmax and use the resulting values in the table:

def lj(r, rmin, rmax, epsilon, sigma):
    V = 4 * epsilon * ( (sigma / r)**12 - (sigma / r)**6);
    F = 4 * epsilon / r * ( 12 * (sigma / r)**12 - 6 * (sigma / r)**6);
    return (V, F)

nl = nlist.cell()
table = pair.table(width=1000, nlist=nl)
table.pair_coeff.set('A', 'A', func=lj, rmin=0.8, rmax=3.0, coeff=dict(epsilon=1.5, sigma=1.0))
table.pair_coeff.set('A', 'B', func=lj, rmin=0.8, rmax=3.0, coeff=dict(epsilon=2.0, sigma=1.2))
table.pair_coeff.set('B', 'B', func=lj, rmin=0.8, rmax=3.0, coeff=dict(epsilon=0.5, sigma=1.0))





Set a table from a file

When you have no function for for V or F, or you otherwise have the data listed in a file,
table can use the given values directly. You must first specify the number of rows
in your tables when initializing pair.table. Then use set_from_file() to read the file:

nl = nlist.cell()
table = pair.table(width=1000, nlist=nl)
table.set_from_file('A', 'A', filename='table_AA.dat')
table.set_from_file('A', 'B', filename='table_AB.dat')
table.set_from_file('B', 'B', filename='table_BB.dat')






Note

For potentials that diverge near r=0, make sure to set rmin to a reasonable value. If a potential does
not diverge near r=0, then a setting of rmin=0 is valid.




	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_from_file(a, b, filename)

	Set a pair interaction from a file.


	Parameters

	
	a (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of type A in pair


	b (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of type B in pair


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file to read








The provided file specifies V and F at equally spaced r values.

Example:

#r  V    F
1.0 2.0 -3.0
1.1 3.0 -4.0
1.2 2.0 -3.0
1.3 1.0 -2.0
1.4 0.0 -1.0
1.5 -1.0 0.0





The first r value sets rmin, the last sets rmax. Any line with # as the first non-whitespace character is
is treated as a comment. The r values must monotonically increase and be equally spaced. The table is read
directly into the grid points used to evaluate \(F_{\mathrm{user}}(r)\) and \(_{\mathrm{user}}(r)\).










	
class hoomd.md.pair.tersoff(r_cut, nlist, name=None)

	Tersoff Potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








tersoff specifies that the Tersoff three-body potential should be applied to every
non-bonded particle pair in the simulation.  Despite the fact that the Tersoff potential accounts
for the effects of third bodies, it is included in the pair potentials because the species of the
third body is irrelevant. It can thus use type-pair parameters similar to those of the pair potentials.

The Tersoff potential is a bond-order potential based on the Morse potential that accounts for the weakening of
individual bonds with increasing coordination number. It does this by computing a modifier to the
attractive term of the potential. The modifier contains the effects of third-bodies on the bond
energies. The potential also includes a smoothing function around the cutoff. The smoothing function
used in this work is exponential in nature as opposed to the sinusoid used by Tersoff. The exponential
function provides continuity up (I believe) the second derivative.


	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.yukawa(r_cut, nlist, name=None)

	Yukawa pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








yukawa specifies that a Yukawa pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
 V_{\mathrm{yukawa}}(r)  = & \varepsilon \frac{ \exp \left( -\kappa r \right) }{r} & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\kappa\) - kappa (in units of 1/distance)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
yukawa = pair.lj(r_cut=3.0, nlist=nl)
yukawa.pair_coeff.set('A', 'A', epsilon=1.0, kappa=1.0)
yukawa.pair_coeff.set('A', 'B', epsilon=2.0, kappa=0.5, r_cut=3.0, r_on=2.0);
yukawa.pair_coeff.set(['A', 'B'], ['C', 'D'], epsilon=0.5, kappa=3.0)






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(mode=None)

	Set parameters controlling the way forces are computed.


	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – (if set) Set the mode with which potentials are handled at the cutoff.





Valid values for mode are: “none” (the default), “shift”, and “xplor”:


	none - No shifting is performed and potentials are abruptly cut off


	shift - A constant shift is applied to the entire potential so that it is 0 at the cutoff


	xplor - A smoothing function is applied to gradually decrease both the force and potential to 0 at the
cutoff when ron < rcut, and shifts the potential to 0 at the cutoff when ron >= rcut.




See pair for the equations.

Examples:

mypair.set_params(mode="shift")
mypair.set_params(mode="no_shift")
mypair.set_params(mode="xplor")














	
class hoomd.md.pair.zbl(r_cut, nlist, name=None)

	ZBL pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the force instance.








zbl specifies that a Ziegler-Biersack-Littmark pair potential should be applied between every
non-excluded particle pair in the simulation.


\begin{eqnarray*}
V_{\mathrm{ZBL}}(r) = & \frac{Z_i Z_j e^2}{4 \pi \epsilon_0 r_{ij}} \left[ 0.1818 \exp \left( -3.2 \frac{r_{ij}}{a_F} \right) + 0.5099 \exp \left( -0.9423 \frac{r_{ij}}{a_F} \right) + 0.2802 \exp \left( -0.4029 \frac{r_{ij}}{a_F} \right) + 0.02817 \exp \left( -0.2016 \frac{r_{ij}}{a_F} \right) \right], & r < r_{\mathrm{cut}} \\
                        = & 0, & r > r_{\mathrm{cut}} \\
\end{eqnarray*}
See pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(Z_i\) - Z_i - Atomic number of species i (unitless)


	\(Z_j\) - Z_j - Atomic number of species j (unitless)


	\(e\) - elementary_charge - The elementary charge (in charge units)


	\(a_0\) - a_0 - The Bohr radius (in distance units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)
- optional: defaults to the global r_cut specified in the pair command


	\(r_{\mathrm{on}}\)- r_on (in distance units)
- optional: defaults to the global r_cut specified in the pair command




Example:

nl = nlist.cell()
zbl = pair.zbl(r_cut = 3.0, nlist=nl)
zbl.pair_coeff.set('A', 'B', Z_i = 54.0, Z_j = 7.0, elementary_charge = 1.0, a_0 = 1.0);






	
compute_energy(tags1, tags2)

	Compute the energy between two sets of particles.


	Parameters

	
	tags1 (ndarray<int32>) – a numpy array of particle tags in the first group


	tags2 (ndarray<int32>) – a numpy array of particle tags in the second group









\[U = \sum_{i \in \mathrm{tags1}, j \in \mathrm{tags2}} V_{ij}(r)\]

where \(V_{ij}(r)\) is the pairwise energy between two particles \(i\) and \(j\).

Assumed properties of the sets tags1 and tags2 are:


	tags1 and tags2 are disjoint


	all elements in tags1 and tags2 are unique


	tags1 and tags2 are contiguous numpy arrays of dtype int32




None of these properties are validated.

Examples:

tags=numpy.linspace(0,N-1,1, dtype=numpy.int32)
# computes the energy between even and odd particles
U = mypair.compute_energy(tags1=numpy.array(tags[0:N:2]), tags2=numpy.array(tags[1:N:2]))










	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

Since this behaves differently for different types of shapes, the
default behavior just raises an exception. Subclasses can override this
to properly return.






	
set_params(coeff)

	zbl has no energy shift modes












          

      

      

    

  

    
      
          
            
  
md.update

Overview







	md.update.constraint_ellipsoid

	Constrain particles to the surface of a ellipsoid.



	md.update.enforce2d

	Enforces 2D simulation.



	md.update.rescale_temp

	Rescales particle velocities.



	md.update.zero_momentum

	Zeroes system momentum.



	md.update.mueller_plathe_flow

	Updater class for a shear flow according to an algorithm published by Mueller Plathe.:






Details

Update particle properties.

When an updater is specified, it acts on the particle system each time step to change
it in some way. See the documentation of specific updaters to find out what they do.


	
class hoomd.md.update.constraint_ellipsoid(group, r=None, rx=None, ry=None, rz=None, P=(0, 0, 0))

	Constrain particles to the surface of a ellipsoid.


	Parameters

	
	group (hoomd.group) – Group for which the update will be set


	P (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – (x,y,z) tuple indicating the position of the center of the ellipsoid (in distance units).


	rx (float [https://docs.python.org/3/library/functions.html#float]) – radius of an ellipsoid in the X direction (in distance units).


	ry (float [https://docs.python.org/3/library/functions.html#float]) – radius of an ellipsoid in the Y direction (in distance units).


	rz (float [https://docs.python.org/3/library/functions.html#float]) – radius of an ellipsoid in the Z direction (in distance units).


	r (float [https://docs.python.org/3/library/functions.html#float]) – radius of a sphere (in distance units), such that r=rx=ry=rz.








constraint_ellipsoid specifies that all particles are constrained
to the surface of an ellipsoid. Each time step particles are projected onto the surface of the ellipsoid.
Method from: http://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf


Attention

For the algorithm to work, we must have \(rx >= rz,~ry >= rz,~rz > 0\).




Note

This method does not properly conserve virial coefficients.




Note

random thermal forces from the integrator are applied in 3D not 2D, therefore they aren’t fully accurate.
Suggested use is therefore only for T=0.



Examples:

update.constraint_ellipsoid(P=(-1,5,0), r=9)
update.constraint_ellipsoid(rx=7, ry=5, rz=3)






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.md.update.enforce2d

	Enforces 2D simulation.

Every time step, particle velocities and accelerations are modified so that their z components are 0: forcing
2D simulations when other calculations may cause particles to drift out of the plane. Using enforce2d is only
allowed when the system is specified as having only 2 dimensions.

Examples:

update.enforce2d()






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.md.update.mueller_plathe_flow(group, flow_target, slab_direction, flow_direction, n_slabs, max_slab=-1, min_slab=-1)

	Updater class for a shear flow according
to an algorithm published by Mueller Plathe.:


“Florian Mueller-Plathe. Reversing the perturbation in nonequilibrium molecular dynamics:
An easy way to calculate the shear viscosity of fluids. Phys. Rev. E, 59:4894-4898, May 1999.”




The simulation box is divided in a number of slabs.
Two distinct slabs of those are chosen. The “max” slab searched for the
max. velocity component in flow direction, the “min” is searched for the min. velocity component.
Afterward, both velocity components are swapped.

This introduces a momentum flow, which drives the flow. The strength of this flow,
can be controlled by the flow_target variant, which defines the integrated target momentum
flow. The searching and swapping is repeated until the target is reached. Depending on the target sign,
the “max” and “min” slap might be swapped.


	Parameters

	
	group (hoomd.group) – Group for which the update will be set


	flow_target (hoomd.variant) – Integrated target flow. The unit is the in the natural units of the simulation: [flow_target] = [timesteps] x \(\mathcal{M}\) x \(\frac{\mathcal{D}}{\tau}\). The unit of [timesteps] is your discretization dt x \(\mathcal{\tau}\).


	slab_direction (X, Y, or Z) – Direction perpendicular to the slabs..


	flow_direction (X, Y, or Z) – Direction of the flow..


	n_slabs (int [https://docs.python.org/3/library/functions.html#int]) – Number of slabs. You want as many as possible for small disturbed volume, where the unphysical swapping is done. But each slab has to contain a sufficient number of particle.


	max_slab (int [https://docs.python.org/3/library/functions.html#int]) – Id < n_slabs where the max velocity component is search for. If set < 0 the value is set to its default n_slabs/2.


	min_slab (int [https://docs.python.org/3/library/functions.html#int]) – Id < n_slabs where the min velocity component is search for. If set < 0 the value is set to its default 0.









Attention


	This updater has to be always applied every timestep.


	This updater works currently only with orthorhombic boxes.







New in version v2.1.



Examples:

#const integrated flow with 0.1 slope for max 1e8 timesteps
const_flow = hoomd.variant.linear_interp( [(0,0),(1e8,0.1*1e8)] )
#velocity gradient in z direction and shear flow in x direction.
update.mueller_plathe_flow(all,const_flow,md.update.mueller_plathe_flow.Z,md.update.mueller_plathe_flow.X,100)






	
X = None

	Direction Enum X for this class






	
Y = None

	Direction Enum Y for this class






	
Z = None

	Direction Enum Z for this class






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
get_flow_epsilon()

	Get the tolerance between target flow and actual achieved flow.






	
get_max_slab()

	Get the slab id of max velocity search.






	
get_min_slab()

	Get the slab id of min velocity search.






	
get_n_slabs()

	Get the number of slabs.






	
get_summed_exchanged_momentum()

	Returned the summed up exchanged velocity of the full simulation.






	
has_max_slab()

	Returns, whether this MPI instance is part of the max slab.






	
has_min_slab()

	Returns, whether this MPI instance is part of the min slab.






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_flow_epsilon(epsilon)

	Set the tolerance between target flow and actual achieved flow.

Args:
epsilon (float): New tolerance for the deviation of actual and achieved flow.






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.md.update.rescale_temp(kT, period=1, phase=0)

	Rescales particle velocities.


	Parameters

	
	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature set point (in energy units)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Velocities will be rescaled every period time steps


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








Every period time steps, particle velocities and angular momenta are rescaled by equal factors
so that they are consistent with a given temperature in the equipartition theorem


\[ \begin{align}\begin{aligned}\langle 1/2 m v^2 \rangle = k_B T\\\langle 1/2 I \omega^2 \rangle = k_B T\end{aligned}\end{align} \]


Attention

rescale_temp does not run on the GPU, and will significantly slow down simulations.



Examples:

update.rescale_temp(kT=1.2)
rescaler = update.rescale_temp(kT=0.5)
update.rescale_temp(period=100, kT=1.03)
update.rescale_temp(period=100, kT=hoomd.variant.linear_interp([(0, 4.0), (1e6, 1.0)]))






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(kT=None)

	Change rescale_temp parameters.


	Parameters

	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – New temperature set point (in energy units)





Examples:

rescaler.set_params(kT=2.0)










	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.










	
class hoomd.md.update.zero_momentum(period=1, phase=0)

	Zeroes system momentum.


	Parameters

	
	period (int [https://docs.python.org/3/library/functions.html#int]) – Momentum will be zeroed every period time steps


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.








Every period time steps, particle velocities are modified such that the total linear
momentum of the system is set to zero.

Examples:

update.zero_momentum()
zeroer= update.zero_momentum(period=10)






	
disable()

	Disables the updater.

Examples:

updater.disable()





Executing the disable command will remove the updater from the system.
Any hoomd.run() command executed after disabling an updater will not use that
updater during the simulation. A disabled updater can be re-enabled
with enable()






	
enable()

	Enables the updater.

Examples:

updater.enable()






See also

disable()








	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_period(period)

	Changes the updater period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

updater.set_period(100);
updater.set_period(1);





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.












          

      

      

    

  

    
      
          
            
  
md.wall

Geometry







	md.wall.cylinder

	Cylinder wall.



	md.wall.group

	Defines a wall group.



	md.wall.plane

	Plane wall.



	md.wall.sphere

	Sphere wall.






Overview







	md.wall.force_shifted_lj

	Force-shifted Lennard-Jones wall potential.



	md.wall.gauss

	Gaussian wall potential.



	md.wall.lj

	Lennard-Jones wall potential.



	md.wall.mie

	Mie potential wall potential.



	md.wall.morse

	Morse wall potential.



	md.wall.slj

	Shifted Lennard-Jones wall potential



	md.wall.wallpotential

	Generic wall potential.



	md.wall.yukawa

	Yukawa wall potential.






Details

Wall potentials.

Wall potentials add forces to any particles within a certain distance,
\(r_{\mathrm{cut}}\), of each wall. In the extrapolated
mode, all particles deemed outside of the wall boundary are included as well.

Wall geometries are used to specify half-spaces. There are two half spaces for
each of the possible geometries included and each can be selected using the
inside parameter. In order to fully specify space, it is necessary that one half
space be closed and one open. Setting inside=True for closed half-spaces
and inside=False for open ones. See wallpotential for more
information on how the concept of half-spaces are used in implementing wall forces.


Attention

The current wall force implementation does not support NPT integrators.



Wall groups (group) are used to pass wall geometries to wall forces.
By themselves, wall groups do nothing. Only when you specify a wall force
(i.e. lj),  are forces actually applied between the wall and the


	
class hoomd.md.wall.cylinder(r=0.0, origin=(0.0, 0.0, 0.0), axis=(0.0, 0.0, 1.0), inside=True)

	Cylinder wall.


	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – Cylinder radius (in distance units)


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Cylinder origin (in x,y,z coordinates)


	axis (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Cylinder axis vector (in x,y,z coordinates)


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used (bool)








Define a cylindrical half-space:


	inside = True selects the space inside the radius of the cylinder and includes the cylinder surface.


	inside = False selects the space outside the radius of the cylinder.




Use in function calls or by reference in the creation or modification of wall groups.

For an example see sphere.






	
class hoomd.md.wall.force_shifted_lj(walls, r_cut=False, name='')

	Force-shifted Lennard-Jones wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Force-shifted Lennard-Jones potential.
See hoomd.md.pair.force_shifted_lj for force details and base parameters and wallpotential
for generalized wall potential implementation.

Example:

walls=wall.group()
# add walls to interact with
wall_force_fslj=wall.force_shifted_lj(walls, r_cut=3.0)
wall_force_fslj.force_coeff.set('A', epsilon=1.0, sigma=1.0)
wall_force_fslj.force_coeff.set('B', epsilon=1.5, sigma=3.0, r_cut = 8.0)
wall_force_fslj.force_coeff.set(['C','D'], epsilon=1.0, sigma=1.0, alpha = 1.5)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.gauss(walls, r_cut=False, name='')

	Gaussian wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Gaussian potential.
See hoomd.md.pair.gauss for force details and base parameters and wallpotential for
generalized wall potential implementation

Example:

walls=wall.group()
# add walls to interact with
wall_force_gauss=wall.gauss(walls, r_cut=3.0)
wall_force_gauss.force_coeff.set('A', epsilon=1.0, sigma=1.0)
wall_force_gauss.force_coeff.set('A', epsilon=2.0, sigma=1.0, r_cut=3.0)
wall_force_gauss.force_coeff.set(['C', 'D'], epsilon=3.0, sigma=0.5)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.group(*walls)

	Defines a wall group.


	Parameters

	walls (list [https://docs.python.org/3/library/stdtypes.html#list]) – Wall objects to be included in the group.





All wall forces use a wall group as an input so it is necessary to create a
wall group object before any wall force can be created. Modifications
of the created wall group may occur at any time before hoomd.run()
is invoked. Current supported geometries are spheres, cylinder, and planes. The
maximum number of each type of wall is 20, 20, and 60 respectively.

The inside parameter used in each wall geometry is used to specify the
half-space that is to be used for the force implementation. See
wallpotential for more general details and sphere
cylinder, and plane for the definition of inside for
each geometry.

An effective use of wall forces requires considering the geometry of the
system. Walls are only evaluated in one simulation box and are not periodic. It
is therefore important to ensure that the walls that intersect with a periodic
boundary meet.


Note

The entire structure can easily be viewed by printing the group object.




Note

While all x,y,z coordinates can be given as a list or tuple, only origin
parameters are points in x,y,z space. Normal and axis parameters are vectors and
must have a nonzero magnitude.




Note

Wall structure modifications between hoomd.run()
calls will be implemented in the next run. However, modifications must be done
carefully since moving the wall can result in particles moving to a relative
position which causes exceptionally high forces resulting in particles moving
many times the box length in one move.



Example:

In[0]:
# Creating wall geometry definitions using convenience functions
wallstructure=wall.group()
wallstructure.add_sphere(r=1.0,origin=(0,1,3))
wallstructure.add_sphere(1.0,[0,-1,3],inside=False)
wallstructure.add_cylinder(r=1.0,origin=(1,1,1),axis=(0,0,3),inside=True)
wallstructure.add_cylinder(4.0,[0,0,0],(1,0,1))
wallstructure.add_cylinder(5.5,(1,1,1),(3,-1,1),False)
wallstructure.add_plane(origin=(3,2,1),normal=(2,1,4))
wallstructure.add_plane((0,0,0),(10,2,1))
wallstructure.add_plane((0,0,0),(0,2,1))
print(wallstructure)

Out[0]:
Wall_Data_Structure:
spheres:2{
[0:   Radius=1.0  Origin=(0.0, 1.0, 3.0)  Inside=True]
[1:   Radius=1.0  Origin=(0.0, -1.0, 3.0) Inside=False]}
cylinders:3{
[0:   Radius=1.0  Origin=(1.0, 1.0, 1.0)  Axis=(0.0, 0.0, 3.0)    Inside=True]
[1:   Radius=4.0  Origin=(0.0, 0.0, 0.0)  Axis=(1.0, 0.0, 1.0)    Inside=True]
[2:   Radius=5.5  Origin=(1.0, 1.0, 1.0)  Axis=(3.0, -1.0, 1.0)   Inside=False]}
planes:3{
[0:   Origin=(3.0, 2.0, 1.0)  Normal=(2.0, 1.0, 4.0)]
[1:   Origin=(0.0, 0.0, 0.0)  Normal=(10.0, 2.0, 1.0)]
[2:   Origin=(0.0, 0.0, 0.0)  Normal=(0.0, 2.0, 1.0)]}

In[1]:
# Deleting wall geometry definitions using convenience functions in all accepted types
wallstructure.del_plane(range(3))
wallstructure.del_cylinder([0,2])
wallstructure.del_sphere(1)
print(wallstructure)

Out[1]:
Wall_Data_Structure:
spheres:1{
[0:   Radius=1.0  Origin=(0.0, 1.0, 3.0)  Inside=True]}
cylinders:1{
[0:   Radius=4.0  Origin=(0.0, 0.0, 0.0)  Axis=(1.0, 0.0, 1.0)    Inside=True]}
planes:0{}

In[2]:
# Modifying wall geometry definitions using convenience functions
wallstructure.spheres[0].r=2.0
wallstructure.cylinders[0].origin=[1,2,1]
wallstructure.cylinders[0].axis=(0,0,1)
print(wallstructure)

Out[2]:
Wall_Data_Structure:
spheres:1{
[0:   Radius=2.0  Origin=(0.0, 1.0, 3.0)  Inside=True]}
cylinders:1{
[0:   Radius=4.0  Origin=(1.0, 2.0, 1.0)  Axis=(0.0, 0.0, 1.0)    Inside=True]}
planes:0{}






	
add(wall)

	Generic wall add for wall objects.

Generic convenience function to add any wall object to the group.
Accepts sphere, cylinder, plane, and lists of any
combination of these.






	
add_cylinder(r, origin, axis, inside=True)

	Adds a cylinder to the wall group.


	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – Cylinder radius (in distance units)


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Cylinder origin (in x,y,z coordinates)


	axis (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Cylinder axis vector (in x,y,z coordinates)


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used (bool)








Adds a cylinder with the specified parameters to the group.






	
add_plane(origin, normal, inside=True)

	Adds a plane to the wall group.


	Parameters

	
	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Plane origin (in x,y,z coordinates)


	normal (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Plane normal vector (in x,y,z coordinates)


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used (bool)








Adds a plane with the specified parameters to the wallgroup.planes list.






	
add_sphere(r, origin, inside=True)

	Adds a sphere to the wall group.


	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – Sphere radius (in distance units)


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Sphere origin (in x,y,z coordinates)


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used (bool)








Adds a sphere with the specified parameters to the group.






	
del_cylinder(*indexs)

	Deletes the cylinder or cylinders in index.


	Parameters

	index (list [https://docs.python.org/3/library/stdtypes.html#list]) – The index of cylinder(s) desired to delete. Accepts int, range, and lists.





Removes the specified cylinder or cylinders from the wallgroup.cylinders list.






	
del_plane(*indexs)

	Deletes the plane or planes in index.


	Parameters

	index (list [https://docs.python.org/3/library/stdtypes.html#list]) – The index of plane(s) desired to delete. Accepts int, range, and lists.





Removes the specified plane or planes from the wallgroup.planes list.






	
del_sphere(*indexs)

	Deletes the sphere or spheres in index.


	Parameters

	index (list [https://docs.python.org/3/library/stdtypes.html#list]) – The index of sphere(s) desired to delete. Accepts int, range, and lists.





Removes the specified sphere or spheres from the wallgroup.spheres list.










	
class hoomd.md.wall.lj(walls, r_cut=False, name='')

	Lennard-Jones wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Lennard-Jones potential.
See hoomd.md.pair.lj for force details and base parameters and
wallpotential for generalized wall potential implementation

Standard mode:

walls=wall.group()
#add walls
lj=wall.lj(walls, r_cut=3.0)
lj.force_coeff.set('A', sigma=1.0,epsilon=1.0)  #plotted below in red
lj.force_coeff.set('B', sigma=1.0,epsilon=1.0, r_cut=2.0**(1.0/2.0))
lj.force_coeff.set(['A','B'], epsilon=2.0, sigma=1.0, alpha=1.0, r_cut=3.0)





Extrapolated mode:

walls=wall.group()
#add walls
lj_extrap=wall.lj(walls, r_cut=3.0)
lj_extrap.force_coeff.set('A', sigma=1.0,epsilon=1.0, r_extrap=1.1) #plotted in blue below





V(r) plot:

[image: _images/wall_extrap.png]

	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.mie(walls, r_cut=False, name='')

	Mie potential wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Mie potential.
See hoomd.md.pair.mie for force details and base parameters and wallpotential for
generalized wall potential implementation

Example:

walls=wall.group()
# add walls to interact with
wall_force_mie=wall.mie(walls, r_cut=3.0)
wall_force_mie.force_coeff.set('A', epsilon=1.0, sigma=1.0, n=12, m=6)
wall_force_mie.force_coeff.set('A', epsilon=2.0, sigma=1.0, n=14, m=7, r_cut=3.0)
wall_force_mie.force_coeff.set('B', epsilon=1.0, sigma=1.0, n=15.1, m=6.5, r_cut=2**(1.0/6.0))






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.morse(walls, r_cut=False, name='')

	Morse wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Morse potential.
See hoomd.md.pair.morse for force details and base parameters and wallpotential for
generalized wall potential implementation

Example:

walls=wall.group()
# add walls to interact with
wall_force_morse=wall.morse(walls, r_cut=3.0)
wall_force_morse.force_coeff.set('A', D0=1.0, alpha=3.0, r0=1.0)
wall_force_morse.force_coeff.set('A', D0=1.0, alpha=3.0, r0=1.0, r_cut=3.0)
wall_force_morse.force_coeff.set(['C', 'D'], D0=1.0, alpha=3.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.plane(origin=(0.0, 0.0, 0.0), normal=(0.0, 0.0, 1.0), inside=True)

	Plane wall.


	Parameters

	
	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Plane origin (in x,y,z coordinates)n <i>Default : (0.0, 0.0, 0.0)</i>


	normal (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Plane normal vector (in x,y,z coordinates)n <i>Default : (0.0, 0.0, 1.0)</i>


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used (bool)n <i>Default : True</i>








Define a planar half space.


	inside = True selects the space on the side of the plane to which the normal vector points and includes the plane surface.


	inside = False selects the space on the side of the plane opposite the normal vector.




Use in function calls or by reference in the creation or modification of wall groups.

For an example see sphere.






	
class hoomd.md.wall.slj(walls, r_cut=False, d_max=None, name='')

	Shifted Lennard-Jones wall potential


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Shifted Lennard-Jones potential.
Note that because slj is dependent upon particle diameters the following
correction is necessary to the force details in the hoomd.md.pair.slj description.

\(\Delta = d_i/2 - 1\) where \(d_i\) is the diameter of particle \(i\).
See hoomd.md.pair.slj for force details and base parameters and wallpotential for
generalized wall potential implementation

Example:

walls=wall.group()
# add walls to interact with
wall_force_slj=wall.slj(walls, r_cut=3.0)
wall_force_slj.force_coeff.set('A', epsilon=1.0, sigma=1.0)
wall_force_slj.force_coeff.set('A', epsilon=2.0, sigma=1.0, r_cut=3.0)
wall_force_slj.force_coeff.set('B', epsilon=1.0, sigma=1.0, r_cut=2**(1.0/6.0))






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.sphere(r=0.0, origin=(0.0, 0.0, 0.0), inside=True)

	Sphere wall.


	Parameters

	
	r (float [https://docs.python.org/3/library/functions.html#float]) – Sphere radius (in distance units)


	origin (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Sphere origin (in x,y,z coordinates)


	inside (bool [https://docs.python.org/3/library/functions.html#bool]) – Selects the half-space to be used








Define a spherical half-space:


	inside = True selects the space inside the radius of the sphere and includes the sphere surface.


	inside = False selects the space outside the radius of the sphere.




Use in function calls or by reference in the creation or modification of wall groups.

The following example is intended to demonstrate cylinders and planes
as well. Note that the distinction between points and vectors is reflected in
the default parameters.

Examples:

In[0]:
# One line initialization
one_line_walls=wall.group(wall.sphere(r=3,origin=(0,0,0)),wall.cylinder(r=2.5,axis=(0,0,1),inside=True), wall.plane(normal=(1,0,0)))
print(one_line_walls)
full_wall_object=wall.group([wall.sphere()]*20,[wall.cylinder()]*20,[wall.plane()]*60)
# Sharing wall group elements and access by reference
common_sphere=wall.sphere()
linked_walls1=wall.group(common_sphere,wall.plane(origin=(3,0,0),normal=(-1,0,0)))
linked_walls2=wall.group(common_sphere,wall.plane(origin=(-3,0,0),normal=(1,0,0)))
common_sphere.r=5.0
linked_walls1.spheres[0].origin=(0,0,1)
print(linked_walls1)
print(linked_walls2)

Out[0]:
Wall_Data_Structure:
spheres:1{
[0:   Radius=3    Origin=(0.0, 0.0, 0.0)  Inside=True]}
cylinders:1{
[0:   Radius=2.5  Origin=(0.0, 0.0, 0.0)  Axis=(0.0, 0.0, 1.0)    Inside=True]}
planes:1{
[0:   Origin=(0.0, 0.0, 0.0)  Normal=(1.0, 0.0, 0.0)]}
Wall_Data_Structure:
spheres:1{
[0:   Radius=5.0  Origin=(0.0, 0.0, 1.0)  Inside=True]}
cylinders:0{}
planes:1{
[0:   Origin=(3.0, 0.0, 0.0)  Normal=(-1.0, 0.0, 0.0)]}
Wall_Data_Structure:
spheres:1{
[0:   Radius=5.0  Origin=(0.0, 0.0, 1.0)  Inside=True]}
cylinders:0{}
planes:1{
[0:   Origin=(-3.0, 0.0, 0.0) Normal=(1.0, 0.0, 0.0)]}










	
class hoomd.md.wall.wallpotential(walls, r_cut, name='')

	Generic wall potential.

wallpotential should not be used directly.
It is a base class that provides common features to all standard wall
potentials. Rather than repeating all of that documentation in many different
places, it is collected here.

All wall potential commands specify that a given potential energy and potential be
computed on all particles in the system within a cutoff distance,
\(r_{\mathrm{cut}}\), from each wall in the given wall group.
The force \(\vec{F}\) is in the direction of \(\vec{r}\), the vector
pointing from the particle to the wall or half-space boundary and
\(V_{\mathrm{pair}}(r)\) is the specific pair potential chosen by the
respective command. Wall forces are implemented with the concept of half-spaces
in mind. There are two modes which are allowed currently in wall potentials:
standard and extrapolated.

Standard Mode.

In the standard mode, when \(r_{\mathrm{extrap}} \le 0\), the potential
energy is only applied to the half-space specified in the wall group. \(V(r)\)
is evaluated in the same manner as when the mode is shift for the analogous pair
potentials within the boundaries of the half-space.


\[V(r)  = V_{\mathrm{pair}}(r) - V_{\mathrm{pair}}(r_{\mathrm{cut}})\]

For inside=True (closed) half-spaces:


\begin{eqnarray*}
\vec{F}  = & -\nabla V(r) & 0 \le r < r_{\mathrm{cut}} \\
         = & 0 & r \ge r_{\mathrm{cut}} \\
         = & 0 & r < 0
\end{eqnarray*}
For inside=False (open) half-spaces:


\begin{eqnarray*}
\vec{F}  = & -\nabla V(r) & 0 < r < r_{\mathrm{cut}} \\
         = & 0 & r \ge r_{\mathrm{cut}} \\
         = & 0 & r \le 0
\end{eqnarray*}
The wall potential can be linearly extrapolated beyond a minimum separation from the wall
\(r_{\mathrm{extrap}}\) in the active half-space. This can be useful for bringing particles outside the
half-space into the active half-space. It can also be useful for typical wall force usages by
effectively limiting the maximum force experienced by the particle due to the wall. The potential is extrapolated into both
half-spaces and the cutoff \(r_{\mathrm{cut}}\) only applies in the active half-space. The user should
then be careful using this mode with multiple nested walls. It is intended to be used primarily for initialization.

The extrapolated potential has the following form:


\begin{eqnarray*}
V_{\mathrm{extrap}}(r) =& V(r) &, r > r_{\rm extrap} \\
     =& V(r_{\rm extrap}) + (r_{\rm extrap}-r)\vec{F}(r_{\rm extrap}) \cdot \vec{n}&, r \le r_{\rm extrap}
\end{eqnarray*}
where \(\vec{n}\) is the normal into the active half-space.
This gives an effective force on the particle due to the wall:


\begin{eqnarray*}
\vec{F}(r) =& \vec{F}_{\rm pair}(r) &, r > r_{\rm extrap} \\
        =& \vec{F}_{\rm pair}(r_{\rm extrap}) &, r \le r_{\rm extrap}
\end{eqnarray*}
where \(\vec{F}_{\rm pair}\) is given by the gradient of the pair force


\begin{eqnarray*}
\vec{F}_{\rm pair}(r) =& -\nabla V_{\rm pair}(r) &, r < r_{\rm cut} \\
                   =& 0 &, r \ge r_{\mathrm{cut}}
\end{eqnarray*}
In other words, if \(r_{\rm extrap}\) is chosen so that the pair force would point into the active half-space,
the extrapolated potential will push all particles into the active half-space. See lj for a
pictorial example.

To use extrapolated mode, the following coefficients must be set per unique particle types:


	All parameters required by the pair potential base for the wall potential


	\(r_{\mathrm{cut}}\) - r_cut (in distance units) - Optional: Defaults to global r_cut for the force if given or 0.0 if not


	\(r_{\mathrm{extrap}}\) - r_extrap (in distance units) - Optional: Defaults to 0.0




Generic Example

Note that the walls object below must be created before it is given as an
argument to the force object. However, walls can be modified at any time before
hoomd.run() is called and it will update itself appropriately. See
group for more details about specifying the walls to be used:

walls=wall.group()
# Edit walls
my_force=wall.pairpotential(walls)
my_force.force_coeff.set('A', all required arguments)
my_force.force_coeff.set(['B','C'],r_cut=0.3, all required arguments)
my_force.force_coeff.set(['B','C'],r_extrap=0.3, all required arguments)





A specific example can be found in lj


Attention

The current wall force implementation does not support NPT integrators.




Note

The virial due to walls is computed, but the pressure and reported by hoomd.analyze.log
is not well defined. The volume (area) of the box enters into the pressure computation, which is
not correct in a confined system. It may not even be possible to define an appropriate volume with
soft walls.




Note

An effective use of wall forces requires considering the geometry of the
system. Each wall is only evaluated in one simulation box and thus is not
periodic. Forces will be evaluated and added to all particles from all walls in
the wall group. Additionally there are no safeguards
requiring a wall to exist inside the box to have interactions. This means that
an attractive force existing outside the simulation box would pull particles
across the periodic boundary where they would immediately cease to have any
interaction with that wall. It is therefore up to the user to use walls in a
physically meaningful manner. This includes the geometry of the walls, their
interactions, and as noted here their location.




Note

When \(r_{\mathrm{cut}} \le 0\) or is set to False the particle type
wall interaction is excluded.




Note

While wall potentials are based on the same potential energy calculations
as pair potentials, Features of pair potentials such as specified neighborlists,
and alternative force shifting modes are not supported.




	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.wall.yukawa(walls, r_cut=False, name='')

	Yukawa wall potential.


	Parameters

	
	walls (group) – Wall group containing half-space geometries for the force to act in.


	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – The global r_cut value for the force. Defaults to False or 0 if not specified.


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The force name which will be used in the metadata and log files.








Wall force evaluated using the Yukawa potential.
See hoomd.md.pair.yukawa for force details and base parameters and wallpotential for
generalized wall potential implementation

Example:

walls=wall.group()
# add walls to interact with
wall_force_yukawa=wall.yukawa(walls, r_cut=3.0)
wall_force_yukawa.force_coeff.set('A', epsilon=1.0, kappa=1.0)
wall_force_yukawa.force_coeff.set('A', epsilon=2.0, kappa=0.5, r_cut=3.0)
wall_force_yukawa.force_coeff.set(['C', 'D'], epsilon=0.5, kappa=3.0)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
md.special_pair

Overview







	md.special_pair.lj

	LJ special pair potential.



	md.special_pair.coulomb

	Coulomb special pair potential.






Details

Potentials between special pairs of particles

Special pairs are used to implement interactions between designated pairs of particles.
They act much like bonds, except that the interaction potential is typically a pair potential,
such as LJ.

By themselves, special pairs that have been specified in an initial configuration do nothing. Only when you
specify an force (i.e. special_pairs.lj), are forces actually calculated between the
listed particles.


	
class hoomd.md.special_pair.coeff

	Define special_pair coefficients.

The coefficients for all special pair potentials are specified using this class. Coefficients are
specified per pair type.

There are two ways to set the coefficients for a particular special_pair potential.
The first way is to save the special_pair potential in a variable and call set() directly.
See below for an example of this.

The second method is to build the coeff class first and then assign it to the
special_pair potential. There are some advantages to this method in that you could specify a
complicated set of special_pair potential coefficients in a separate python file and import
it into your job script.

Example:

my_coeffs = hoomd.md.special_pair.coeff();
special_pair_force.pair_coeff.set('pairtype1', epsilon=1, sigma=1)
special_pair_force.pair_coeff.set('backbone', epsilon=1.2, sigma=1)






	
set(type, **coeffs)

	Sets parameters for special_pair types.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of special_pair (or a list of type names)


	coeffs – Named coefficients (see below for examples)








Calling set() results in one or more parameters being set for a special_pair type. Types are identified
by name, and parameters are also added by name. Which parameters you need to specify depends on the special_pair
potential you are setting these coefficients for, see the corresponding documentation.

All possible special_pair types as defined in the simulation box must be specified before executing run().
You will receive an error if you fail to do so. It is not an error, however, to specify coefficients for
special_pair types that do not exist in the simulation. This can be useful in defining a potential field for many
different types of special_pairs even when some simulations only include a subset.

Examples:

my_special_pair_force.special_pair_coeff.set('pair1', epsilon=1, sigma=1)
my_special_pair_force.pair_coeff.set('pair2', epsilon=0.5, sigma=0.7)
my_special_pair_force.pair_coeff.set(['special_pairA','special_pairB'], epsilon=0, sigma=1)






Note

Single parameters can be updated. If both k and r0 have already been set for a particle type,
then executing coeff.set('polymer', r0=1.0) will update the value of r0 and leave the other
parameters as they were previously set.












	
class hoomd.md.special_pair.coulomb(name=None)

	Coulomb special pair potential.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the special_pair instance.





coulomb specifies a Coulomb potential energy between the two particles in each defined pair.

This is useful for implementing e.g. special 1-4 interactions in all-atom force fields. It uses a standard Coulomb interaction with a scaling parameter. This allows for using this for scaled 1-4 interactions like in OPLS where both the 1-4 LJ and Coulomb interactions are scaled by 0.5.


\begin{eqnarray*}
V_{\mathrm{Coulomb}}(r)  = & \alpha \cdot \left[ \frac{q_{a}q_{b}}{r} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
where \(\vec{r}\) is the vector pointing from one particle to the other in the bond.

Coefficients:


	\(\alpha\) - Coulomb scaling factor (defaults to 1.0)


	\(q_{a}\) - charge of particle a (in hoomd charge units)


	\(q_{b}\) - charge of particle b (in hoomd charge units)


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)




Example:

coul = special_pair.coulomb(name="myOPLS_style")
coul.pair_coeff.set('pairtype_1', alpha=0.5, r_cut=1.1)






Note

The energy of special pair interactions is reported in a log quantity special_pair_coul_energy, which
is separate from those of other non-bonded interactions. Therefore, the total energy of non-bonded interactions
is obtained by adding that of standard and special interactions.




New in version 2.2.




Changed in version 2.2.




	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)










	
class hoomd.md.special_pair.lj(name=None)

	LJ special pair potential.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the special_pair instance.





lj specifies a Lennard-Jones potential energy between the two particles in each defined pair.

This is useful for implementing e.g. special 1-4 interactions in all-atom force fields.

The pair potential uses the standard LJ definition.


\begin{eqnarray*}
V_{\mathrm{LJ}}(r)  = & 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                  \alpha \left( \frac{\sigma}{r} \right)^{6} \right] & r < r_{\mathrm{cut}} \\
                    = & 0 & r \ge r_{\mathrm{cut}} \\
\end{eqnarray*}
where \(\vec{r}\) is the vector pointing from one particle to the other in the bond.

Coefficients:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless) - optional: defaults to 1.0


	\(r_{\mathrm{cut}}\) - r_cut (in distance units)




Example:

lj = special_pair.lj(name="my_pair")
lj.pair_coeff.set('pairtype_1', epsilon=5.4, sigma=0.47, r_cut=1.1)






Note

The energy of special pair interactions is reported in a log quantity special_pair_lj_energy, which
is separate from those of other non-bonded interactions. Therefore, the total energy of nonbonded interactions
is obtained by adding that of standard and special interactions.




New in version 2.1.




	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
mpcd

Overview







	hoomd.mpcd.integrator

	MPCD integrator






Details

Multiparticle collision dynamics.

Simulating complex fluids and soft matter using conventional molecular dynamics
methods (hoomd.md) can be computationally demanding due to large
disparities in the relevant length and time scales between molecular-scale
solvents and mesoscale solutes such as polymers, colloids, and deformable
materials like cells. One way to overcome this challenge is to simplify the model
for the solvent while retaining its most important interactions with the solute.
MPCD is a particle-based simulation method for resolving solvent-mediated
fluctuating hydrodynamic interactions with a microscopically detailed solute
model. This method has been successfully applied to a simulate a broad class
of problems, including polymer solutions and colloidal suspensions both in and
out of equilibrium.

Algorithm

In MPCD, the solvent is represented by point particles having continuous
positions and velocities. The solvent particles propagate in alternating
streaming and collision steps. During the streaming step, particles evolve
according to Newton’s equations of motion. Typically, no external forces are
applied to the solvent, and streaming is straightforward with a large time step.
Particles are then binned into local cells and undergo a stochastic multiparticle
collision within the cell. Collisions lead to the build up of hydrodynamic
interactions, and the frequency and nature of the collisions, along with the
solvent properties, determine the transport coefficients. All standard collision
rules conserve linear momentum within the cell and can optionally be made to
enforce angular-momentum conservation. Currently, we have implemented
the following collision rules with linear-momentum conservation only:



	srd – Stochastic rotation dynamics


	at – Andersen thermostat







Solute particles can be coupled to the solvent during the collision step. This
is particularly useful for soft materials like polymers. Standard molecular
dynamics integration can be applied to the solute. Coupling to the MPCD
solvent introduces both hydrodynamic interactions and a heat bath that acts as
a thermostat. In the future, fluid-solid coupling will also be introduced during
the streaming step to couple hard particles and boundaries.

Details of this implementation of the MPCD algorithm for HOOMD-blue can be found
in M. P. Howard et al. (2018) [https://doi.org/10.1016/j.cpc.2018.04.009].

Getting started

MPCD is intended to be used as an add-on to the standard MD methods in
hoomd.md. To get started, take the following steps:



	Initialize any solute particles using standard methods (hoomd.init).


	Initialize the MPCD solvent particles using one of the methods in
mpcd.init. Additional details on how to manipulate the solvent
particle data can be found in mpcd.data.


	Create an MPCD integrator.


	Choose the appropriate streaming method from mpcd.stream.


	Choose the appropriate collision rule from mpcd.collide, and set
the collision rule parameters.


	Setup an MD integrator and any interactions between solute particles.


	Optionally, configure the sorting frequency to improve performance (see
update.sort).


	Run your simulation!







Example script for a pure bulk SRD fluid:

import hoomd
hoomd.context.initialize()
from hoomd import mpcd

# Initialize (empty) solute in box.
box = hoomd.data.boxdim(L=100.)
hoomd.init.read_snapshot(hoomd.data.make_snapshot(N=0, box=box))

# Initialize MPCD particles and set sorting period.
s = mpcd.init.make_random(N=int(10*box.get_volume()), kT=1.0, seed=7)
s.sorter.set_period(period=25)

# Create MPCD integrator with streaming and collision methods.
mpcd.integrator(dt=0.1)
mpcd.stream.bulk(period=1)
mpcd.collide.srd(seed=42, period=1, angle=130., kT=1.0)

hoomd.run(2000)





Stability

hoomd.mpcd is currently stable, but remains under development.
When upgrading versions, existing job scripts may need to be need to be updated.
Such modifications will be noted in the change log.

Maintainer: Michael P. Howard, University of Texas at Austin.


	
class hoomd.mpcd.integrator(dt, aniso=None)

	MPCD integrator


	Parameters

	
	dt (float [https://docs.python.org/3/library/functions.html#float]) – Each time step of the simulation hoomd.run() will
advance the real time of the system forward by dt (in time units).


	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to integrate rotational degrees of freedom (bool),
default None (autodetect).








The MPCD integrator enables the MPCD algorithm concurrently with standard
MD integrate methods. An integrator must be created
in order for stream and collide
methods to take effect. Embedded MD particles require the creation of an
appropriate integration method. Typically, this will just be
nve.

In MPCD simulations, dt defines the amount of time that the system is advanced
forward every time step. MPCD streaming and collision steps can be defined to
occur in multiples of dt. In these cases, any MD particle data will be updated
every dt, while the MPCD particle data is updated asynchronously for performance.
For example, if MPCD streaming happens every 5 steps, then the particle data will be
updated as follows:

        0     1     2     3     4     5
MD:     |---->|---->|---->|---->|---->|
MPCD:   |---------------------------->|





If the MPCD particle data is accessed via the snapshot interface at time
step 3, it will actually contain the MPCD particle data for time step 5.
The MD particles can be read at any time step because their positions
are updated every step.

Examples:

mpcd.integrator(dt=0.1)
mpcd.integrator(dt=0.01, aniso=True)






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(dt=None, aniso=None)

	Changes parameters of an existing integration mode.


	Parameters

	
	dt (float [https://docs.python.org/3/library/functions.html#float]) – New time step delta (if set) (in time units).


	aniso (bool [https://docs.python.org/3/library/functions.html#bool]) – Anisotropic integration mode (bool), default None (autodetect).








Examples:

integrator.set_params(dt=0.007)
integrator.set_params(dt=0.005, aniso=False)













Modules



	mpcd.collide

	mpcd.data

	mpcd.force

	mpcd.init

	mpcd.integrate

	mpcd.stream

	mpcd.update








          

      

      

    

  

    
      
          
            
  
mpcd.collide

Overview







	at

	



	srd

	






Details

MPCD collision methods

An MPCD collision method is required to update the particle velocities over time.
It is meant to be used in conjunction with an integrator
and streaming method (see stream). Particles are binned into
cells based on their positions, and all particles in a cell undergo a stochastic
collision that updates their velocities while conserving linear momentum. Collision
rules can optionally be extended to also enforce angular-momentum conservation.
The stochastic collision lead to a build up of hydrodynamic interactions, and the
choice of collision rule and solvent properties determine the transport coefficients.


	
class hoomd.mpcd.collide.at(seed, period, kT, group=None)

	Andersen thermostat method


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed to the collision method random number generator (must be positive)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of integration steps between collisions


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature set
point for the thermostat (in energy units).


	group (hoomd.group) – Group of particles to embed in collisions








This class implements the Andersen thermostat collision rule for MPCD, as described
by Allahyarov and Gompper [https://doi.org/10.1103/PhysRevE.66.036702].
Every period steps, the particles are binned into cells. The size of the cell
can be selected as a property of the MPCD system (see data.system.set_params()).
New particle velocities are then randomly drawn from a Gaussian distribution
(using seed) relative to the center-of-mass velocity for the cell. The random
velocities are given zero-mean so that the cell momentum is conserved. This
collision rule naturally imparts the canonical (NVT) ensemble consistent
with kT. The properties of the AT fluid are tuned using period, kT, the
underlying size of the MPCD cell list, and the particle density.


Note

The period must be chosen as a multiple of the MPCD
stream period. Other values will result in an
error when hoomd.run() is called.



When the total mean-free path of the MPCD particles is small, the underlying
MPCD cell list must be randomly shifted in order to ensure Galilean
invariance. Because the performance penalty from grid shifting is small,
shifting is enabled by default in all simulations. Disable it using
set_params() if you are sure that you do not want to use it.

HOOMD particles in group can be embedded into the collision step (see
embed()). A separate integration method (integrate)
must be specified in order to integrate the positions of particles in group.
The recommended integrator is nve.

Examples:

collide.at(seed=42, period=1, kT=1.0)
collide.at(seed=77, period=50, kT=1.5, group=hoomd.group.all())






	
disable()

	Disable the collision method

Examples:

method.disable()





Disabling the collision method removes it from the current MPCD system definition.
Only one collision method can be attached to the system at any time, so
use this method to remove the current collision method before adding another.






	
embed(group)

	Embed a particle group into the MPCD collision


	Parameters

	group (hoomd.group) – Group of particles to embed





The group is embedded into the MPCD collision step and cell properties.
During collisions, the embedded particles are included in determining
per-cell quantities, and the collisions are applied to the embedded
particles.

No integrator is generated for group. Usually, you will need to create
a separate method to integrate the embedded particles. The recommended
(and most common) integrator to use is nve.
It is generally not a good idea to use a thermostatting integrator for
the embedded particles, since the MPCD particles themselves already act
as a heat bath that will thermalize the embedded particles.

Examples:

polymer = hoomd.group.type('P')
md.integrate.nve(group=polymer)
method.embed(polymer)










	
enable()

	Enable the collision method

Examples:

method.enable()





Enabling the collision method adds it to the current MPCD system definition.
Only one collision method can be attached to the system at any time.
If another method is already set, disable() must be called
first before switching.






	
set_params(shift=None, kT=None)

	Set parameters for the SRD collision method


	Parameters

	
	shift (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perform a random shift of the underlying cell list.


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float]) – Temperature
set point for the thermostat (in energy units).








Examples:

srd.set_params(shift=False)
srd.set_params(shift=True, kT=1.0)
srd.set_params(kT=hoomd.data.variant.linear_interp([[0,1.0],[100,5.0]]))










	
set_period(period)

	Set the collision period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New collision period.





The MPCD collision period can only be changed to a new value on a
simulation timestep that is a multiple of both the previous period
and the new period. An error will be raised if it is not.

Examples:

# The initial period is 5.
# The period can be updated to 2 on step 10.
hoomd.run_upto(10)
method.set_period(period=2)

# The period can be updated to 4 on step 12.
hoomd.run_upto(12)
hoomd.set_period(period=4)














	
class hoomd.mpcd.collide.srd(seed, period, angle, kT=False, group=None)

	Stochastic rotation dynamics method


	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed to the collision method random number generator (must be positive)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of integration steps between collisions


	angle (float [https://docs.python.org/3/library/functions.html#float]) – SRD rotation angle (degrees)


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float] or bool) – Temperature set
point for the thermostat (in energy units). If False (default), no
thermostat is applied and an NVE simulation is run.


	group (hoomd.group) – Group of particles to embed in collisions








This class implements the classic stochastic rotation dynamics collision
rule for MPCD as first proposed by Malevanets and Kapral [http://dx.doi.org/10.1063/1.478857].
Every period steps, the particles are binned into cells. The size of the cell
can be selected as a property of the MPCD system (see data.system.set_params()).
The particle velocities are then rotated by angle around an
axis randomly drawn from the unit sphere. The rotation is done relative to
the average velocity, so this rotation rule conserves momentum and energy
within each cell, and so also globally. The properties of the SRD fluid
are tuned using period, angle, kT, the underlying size of the MPCD
cell list, and the particle density.


Note

The period must be chosen as a multiple of the MPCD
stream period. Other values will
result in an error when hoomd.run() is called.



When the total mean-free path of the MPCD particles is small, the underlying
MPCD cell list must be randomly shifted in order to ensure Galilean
invariance. Because the performance penalty from grid shifting is small,
shifting is enabled by default in all simulations. Disable it using
set_params() if you are sure that you do not want to use it.

HOOMD particles in group can be embedded into the collision step (see
embed()). A separate integration method (integrate)
must be specified in order to integrate the positions of particles in group.
The recommended integrator is nve.

The SRD method naturally imparts the NVE ensemble to the system comprising
the MPCD particles and group. Accordingly, the system must be properly
initialized to the correct temperature. (SRD has an H theorem, and so
particles exchange momentum to reach an equilibrium temperature.) A thermostat
can be applied in conjunction with the SRD method through the kT parameter.
SRD employs a Maxwell-Boltzmann thermostat [https://doi.org/10.1016/j.jcp.2009.09.024]
on the cell level, which generates the (correct) isothermal ensemble. The
temperature is defined relative to the cell-average velocity, and so can be
used to dissipate heat in nonequilibrium simulations. Under this thermostat, the
SRD algorithm still conserves momentum, but energy is of course no longer conserved.

Examples:

collide.srd(seed=42, period=1, angle=130.)
collide.srd(seed=77, period=50, angle=130., group=hoomd.group.all())
collide.srd(seed=1991, period=10, angle=90., kT=1.5)






	
disable()

	Disable the collision method

Examples:

method.disable()





Disabling the collision method removes it from the current MPCD system definition.
Only one collision method can be attached to the system at any time, so
use this method to remove the current collision method before adding another.






	
embed(group)

	Embed a particle group into the MPCD collision


	Parameters

	group (hoomd.group) – Group of particles to embed





The group is embedded into the MPCD collision step and cell properties.
During collisions, the embedded particles are included in determining
per-cell quantities, and the collisions are applied to the embedded
particles.

No integrator is generated for group. Usually, you will need to create
a separate method to integrate the embedded particles. The recommended
(and most common) integrator to use is nve.
It is generally not a good idea to use a thermostatting integrator for
the embedded particles, since the MPCD particles themselves already act
as a heat bath that will thermalize the embedded particles.

Examples:

polymer = hoomd.group.type('P')
md.integrate.nve(group=polymer)
method.embed(polymer)










	
enable()

	Enable the collision method

Examples:

method.enable()





Enabling the collision method adds it to the current MPCD system definition.
Only one collision method can be attached to the system at any time.
If another method is already set, disable() must be called
first before switching.






	
set_params(angle=None, shift=None, kT=None)

	Set parameters for the SRD collision method


	Parameters

	
	angle (float [https://docs.python.org/3/library/functions.html#float]) – SRD rotation angle (degrees)


	shift (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perform a random shift of the underlying cell list


	kT (hoomd.variant or float [https://docs.python.org/3/library/functions.html#float] or bool) – Temperature
set point for the thermostat (in energy units). If False, any
set thermostat is removed and an NVE simulation is run.








Examples:

srd.set_params(angle=90.)
srd.set_params(shift=False)
srd.set_params(angle=130., shift=True, kT=1.0)
srd.set_params(kT=hoomd.data.variant.linear_interp([[0,1.0],[100,5.0]]))
srd.set_params(kT=False)










	
set_period(period)

	Set the collision period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New collision period.





The MPCD collision period can only be changed to a new value on a
simulation timestep that is a multiple of both the previous period
and the new period. An error will be raised if it is not.

Examples:

# The initial period is 5.
# The period can be updated to 2 on step 10.
hoomd.run_upto(10)
method.set_period(period=2)

# The period can be updated to 4 on step 12.
hoomd.run_upto(12)
hoomd.set_period(period=4)
















          

      

      

    

  

    
      
          
            
  
mpcd.data

Overview







	snapshot

	MPCD system snapshot



	system

	MPCD system data



	make_snapshot

	Creates an empty MPCD system snapshot






Details

MPCD data structures

MPCD and HOOMD

MPCD data is currently initialized in a secondary step from HOOMD using a
snapshot interface. Even if only MPCD particles are present in the system, an
empty HOOMD system must first be created. Once the HOOMD system has been
initialized (see hoomd.init), an MPCD snapshot can be created using:

>>> snap = mpcd.data.make_snapshot(100)





The MPCD system can then initialized from the snapshot (see hoomd.mpcd.init):

>>> mpcd.init.read_snapshot(snap)





Because the MPCD data is stored separately from the HOOMD data, special care
must be taken when using certain commands that operate on the HOOMD system data.
For example, the HOOMD box size is not permitted to be changed after
the MPCD particle data has been initialized (see hoomd.mpcd.init), so any
resizes or replications of the HOOMD system must occur before then:

>>> hoomd_sys.replicate(2,2,2)
>>> snap.replicate(2,2,2)
>>> mpcd_sys = mpcd.init.read_snapshot(snap)
>>> hoomd_sys.replicate(2,1,1)
**ERROR**





Similarly, box_resize will also fail after the MPCD
system has been initialized.

During a simulation, the MPCD particle data can be read, modified, and restored
using take_snapshot() and
restore_snapshot():

snap = mpcd_sys.take_snapshot()
# modify snapshot
mpcd_sys.restore_snapshot(snap)





MPCD and MPI

MPCD supports MPI parallelization through domain decomposition. The MPCD data
in the snapshot is only valid on rank 0, and is distributed to all ranks through
the snapshot collective calls.

Particle data

All MPCD particle data is accessible through the particles snapshot property.
The size of the MPCD particle data N can be resized:

>>> snap.particles.resize(200)
>>> print(snap.particles.N)
200





Because the number of MPCD particles in a simulation is large, fewer particle
properties are tracked per particle than for standard HOOMD particles. All
particle data can be set as for standard snapshots using numpy arrays. Each
particle is assigned a tag from 0 to N (exclusive) that is tracked. The
following particle properties are recorded:


	Particle positions are stored as an Nx3 numpy array:

>>> snap.particles.position[4] = [1., 2., 3.]
>>> print(snap.particles.position[4])
[ 1. 2. 3.]





By default, all positions are initialized with zeros.



	Particle velocities can similarly be manipulated as an Nx3 numpy array:

>>> snap.particles.velocity[2] = [0.5, 1.5, -0.25]
>>> print(snap.particles.velocity[2])
[0.5 1.5 -0.25]





By default, all velocities are initialized with zeros. It is important to
reassign these to a sensible value consistent with the temperature of the
system.



	Each particle can be assigned a type (a name for the kind of the particle).
First, a list of possible types for the system should be set:

>>> snap.particles.types = ['A','B']
print(snapshot.particles.types)





Then, an index is assigned to each particle corresponding to the type:

>>> snap.particles.typeid[1] = 1 # B
>>> snap.particles.typeid[2] = 0 # A





By default, all particles are assigned a type index of 0, and no types are
set. If no types are specified, type A is created by default at initialization.



	All MPCD particles have the same mass, which can be accessed or set:

>>> snap.particles.mass = 1.5
>>> print(snap.mass)
1.5





By default, all particles are assigned unit mass.






	
hoomd.mpcd.data.make_snapshot(N=0)

	Creates an empty MPCD system snapshot


	Parameters

	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of MPCD particles in the snapshot



	Returns

	MPCD snapshot



	Return type

	snap (hoomd.mpcd.data.snapshot)





Examples:

snap = mpcd.data.make_snapshot()
snap = mpcd.data.make_snapshot(N=50)





Notes

The HOOMD system must be initialized before the MPCD snapshot
is taken, or an error will be raised.






	
class hoomd.mpcd.data.snapshot(sys_snap)

	MPCD system snapshot


	Parameters

	sys_snap (object [https://docs.python.org/3/library/functions.html#object]) – The C++ representation of the system data snapshot





The MPCD system snapshot must be initialized after the HOOMD system.

This class is not intended to be initialized directly by the user, but rather
returned by make_snapshot() or
take_snapshot().


	
particles

	MPCD particle data snapshot






	
replicate(nx=1, ny=1, nz=1)

	Replicate the MPCD system snapshot


	Parameters

	
	nx (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate snapshot in x


	ny (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate snapshot in y


	nz (int [https://docs.python.org/3/library/functions.html#int]) – Number of times to replicate snapshot in z








Examples:

snap.replicate(nx=2,ny=1,nz=3)





This method is intended only to be used with
hoomd.data.system_data.replicate() prior to initialization
of the MPCD system. The MPCD snapshot must be replicated to a size consistent
with the system at the time of initialization. An error will be raised
otherwise.










	
class hoomd.mpcd.data.system(sysdata)

	MPCD system data


	Parameters

	sysdata (object [https://docs.python.org/3/library/functions.html#object]) – C++ representation of the MPCD system data





This class is not intended to be initialized by the user, but is the result
returned by hoomd.mpcd.init.


	
restore_snapshot(snapshot)

	Replaces the current MPCD system state


	Parameters

	snapshot (hoomd.mpcd.data.snapshot) – MPCD system snapshot





The MPCD system data is replaced by the contents of snapshot.

Examples:

snap = mpcd_sys.take_snapshot()
snap.particles.typeid[2] = 1
mpcd_sys.restore_snapshot(snap)










	
set_params(cell=None)

	Set parameters of the MPCD system


	Parameters

	cell (float [https://docs.python.org/3/library/functions.html#float]) – Edge length of an MPCD cell.





Every MPCD system is given a cell list for binning particles (see
mpcd.collide). The size of the cell list sets the length
scale over which hydrodynamic interactions are resolved. By default,
the system is given a cell size of 1.0, i.e., the cell sets the unit
of length, which is typical for most use cases. If your simulation
has a different fundamental unit of length, you can adjust the
cell size, but be aware that this will also change the fluid properties.






	
take_snapshot(particles=True)

	Takes a snapshot of the current state of the MPCD system


	Parameters

	particles (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, include particle data in snapshot





Examples:

snap = mpcd_sys.take_snapshot()
















          

      

      

    

  

    
      
          
            
  
mpcd.force

Overview







	block

	Block force.



	constant

	Constant force.



	sine

	Sine force.






Details

MPCD external force fields.

An external field specifies the force to be applied per MPCD particle in
the equations of motion (see mpcd.stream). The external force should
be compatible with the chosen streaming geometry. Global momentum conservation is
typically broken by adding an external force field; care should be chosen that
the force field does not cause the system to net accelerate (i.e., it must maintain
average momentum conservation). Additionally, a thermostat will likely be
required to maintain temperature control in the driven system (see
mpcd.collide).


Note

The external force must be attached to a streaming method
(see mpcd.stream) using set_force to take effect.
On its own, the force object will not affect the system.




	
class hoomd.mpcd.force.block(F, H=None, w=None)

	Block force.


	Parameters

	
	F (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the force in x per particle.


	H (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Half-width between centers of block regions.


	w (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Half-width of blocks.








Imposes a constant force in x as a function of position in z:


\begin{equation}
\mathbf{F} = \begin{cases}
+F \mathbf{e}_x & |r_z - H| < w \\
-F \mathbf{e}_x & |r_z + H| < w \\
   \mathbf{0}   & \mathrm{otherwise}
\end{cases}
\end{equation}
The force is applied in blocks defined by H and w so that the force in x
is \(+F\) in the upper block, \(-F\) in the lower block, and zero otherwise.
The blocks must lie fully within the simulation box or an error will be raised.
The blocks also should not overlap (the force will be zero in any overlapping
regions), and a warning will be issued if the blocks overlap.

This force field can be used to implement the double-parabola method for measuring
viscosity by setting \(H = L_z/4\) and \(w = L_z/4\), where \(L_z\) is
the size of the simulation box in z. If H or w is None, it will default to this
value based on the current simulation box.

Examples:

# fully specified blocks
force.block(F=1.0, H=5.0, w=5.0)

# default blocks to full box
force.block(F=0.5)






Note

The external force must be attached to a streaming method
(see mpcd.stream) using set_force to take effect.
On its own, the force object will not affect the system.




New in version 2.6.








	
class hoomd.mpcd.force.constant(F)

	Constant force.


	Parameters

	F (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – 3d vector specifying the force per particle.





The same constant-force is applied to all particles, independently of time
and their positions. This force is useful for simulating pressure-driven
flow in conjunction with a confined geometry (e.g., slit)
having no-slip boundary conditions.

Examples:

# tuple
force.constant((1.,0.,0.))

# list
force.constant([1.,2.,3.])

# NumPy array
g = np.array([0.,0.,-1.])
force.constant(g)






Note

The external force must be attached to a streaming method
(see mpcd.stream) using set_force to take effect.
On its own, the force object will not affect the system.




New in version 2.6.








	
class hoomd.mpcd.force.sine(F, k)

	Sine force.


	Parameters

	
	F (float [https://docs.python.org/3/library/functions.html#float]) – Magnitude of the force in x per particle.


	k (float [https://docs.python.org/3/library/functions.html#float]) – Wavenumber for the force.








Applies a force in x that is sinusoidally varying in z.


\[\mathbf{F}(\mathbf{r}) = F \sin (k r_z) \mathbf{e}_x\]

Typically, the wavenumber should be something that is commensurate
with the simulation box. For example, \(k = 2\pi/L_z\) will generate
one period of the sine in bulk geometry.

Examples:

# one period
k0 = 2.*np.pi/box.Lz
force.sine(F=1.0, k=k0)

# two periods
force.sine(F=0.5, k=2*k0)





The user will need to determine what value of k makes sense for their
problem, as it is too difficult to validate all values of k for all
streaming geometries.


Note

The external force must be attached to a streaming method
(see mpcd.stream) using set_force to take effect.
On its own, the force object will not affect the system.




New in version 2.6.










          

      

      

    

  

    
      
          
            
  
mpcd.init

Overview







	make_random

	Initialize particles randomly



	read_snapshot

	Initialize from a snapshot






Details

MPCD system initialization

Commands to initialize the MPCD system data. Currently, random initialization
and snapshot initialization (see hoomd.mpcd.data) are supported.
Random initialization is useful for large systems where a snapshot is impractical.
Snapshot initialization is useful when you require fine control over the particle
properties and initial configuration.


	
hoomd.mpcd.init.make_random(N, kT, seed)

	Initialize particles randomly


	Parameters

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Total number of MPCD particles


	kT (float [https://docs.python.org/3/library/functions.html#float]) – Temperature of MPCD particles (in energy units)


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed for initialization






	Returns

	Initialized MPCD system data (hoomd.mpcd.data.system)





MPCD particles are randomly initialized into the simulation box.
An MPCD system can be randomly initialized only after the HOOMD system
is first initialized (see hoomd.init). The system can only be
initialized one time. The total number of particles N is evenly divided
between all domains. Random positions are then drawn uniformly within the
(local) box. Particle velocities are drawn from a Maxwell-Boltzmann
distribution consistent with temperature kT. All MPCD particles are given
unit mass and type A.

Examples:

mpcd.init.make_random(N=1250000000, kT=1.0, seed=42)





Notes

Random number generation is performed using C++11 mt19937 seeded by
seed plus the rank number in MPI simulations. This random number
generator is separate from other generators used in MPCD, so seed can
be reasonably recycled elsewhere.






	
hoomd.mpcd.init.read_snapshot(snapshot)

	Initialize from a snapshot


	Parameters

	snapshot (hoomd.mpcd.data.snapshot) – MPCD system data snapshot



	Returns

	Initialized MPCD system data (hoomd.mpcd.data.system)





An MPCD system can be initialized from a snapshot after the HOOMD system
is first initialized (see hoomd.init). The system can only be
initialized one time. If no type is specified in the snapshot, a default type
A will be assigned to the MPCD particles.

Examples:

snap = mpcd.data.make_snapshot(N=10)
snap.particles.position[:] = L * np.random.random((10,3))
mpcd.init.read_snapshot(snap)





Notes

It is expected that the snapshot has the same box size as the HOOMD
system. By default, this is how a new snapshot is initialized. If the
HOOMD system is resized after the MPCD snapshot is created and before
initialization from the MPCD snapshot, an error will be raised if the
MPCD snapshot is not properly resized.








          

      

      

    

  

    
      
          
            
  
mpcd.integrate

Overview







	slit

	NVE integration with bounce-back rules in a slit channel.



	slit_pore

	NVE integration with bounce-back rules in a slit pore channel.






Details

MPCD integration methods

Defines bounce-back methods for integrating solutes (MD particles) embedded in an MPCD
solvent. The integration scheme is velocity Verlet (NVE) with bounce-back performed at
the solid boundaries defined by a geometry, as in mpcd.stream. This gives a
simple approximation of the interactions required to keep a solute bounded in a geometry,
and more complex interactions can be specified, for example, by writing custom external fields.

Similar caveats apply to these methods as for the mpcd.stream methods. In particular:



	The simulation box is periodic, but the geometry imposes inherently non-periodic boundary
conditions. You must ensure that the box is sufficiently large to enclose the geometry
and that all particles lie inside it, or an error will be raised at runtime.


	You must also ensure that particles do not self-interact through the periodic boundaries.
This is usually achieved for simple pair potentials by padding the box size by the largest
cutoff radius. Failure to do so may result in unphysical interactions.


	Bounce-back rules do not always enforce no-slip conditions at surfaces properly. It
may still be necessary to add additional ‘ghost’ MD particles in the surface
to achieve the right boundary conditions and reduce density fluctuations.







The integration methods defined here are not restricted to only MPCD simulations: they can be
used with both md.integrate.mode_standard and mpcd.integrator. For
example, the same integration methods might be used to run DPD simulations with surfaces.

These bounce-back methods do not support anisotropic integration because torques are currently
not computed for collisions with the boundary. Similarly, rigid bodies will also not be treated
correctly because the integrators are not aware of the extent of the particles; the surface
reflections are treated as point particles. An error will be raised if an anisotropic integration
mode is specified.


	
class hoomd.mpcd.integrate.slit(group, H, V=0.0, boundary='no_slip')

	NVE integration with bounce-back rules in a slit channel.


	Parameters

	
	group (hoomd.group) – Group of particles on which to apply this method.


	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	V (float [https://docs.python.org/3/library/functions.html#float]) – wall speed (default: 0)


	boundary – ‘slip’ or ‘no_slip’ boundary condition at wall (default: ‘no_slip’)








This integration method applies to particles in group in the parallel-plate channel geometry.
This method is the MD analog of stream.slit, which documents additional details
about the geometry.

A hoomd.compute.thermo is automatically specified and associated with group.

Examples:

all = group.all()
slit = mpcd.integrate.slit(group=all, H=5.0)
slit = mpcd.integrate.slit(group=all, H=10.0, V=1.0)






New in version 2.7.




	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
set_params(H=None, V=None, boundary=None)

	Set parameters for the slit geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	V (float [https://docs.python.org/3/library/functions.html#float]) – wall speed (default: 0)


	boundary – ‘slip’ or ‘no_slip’ boundary condition at wall (default: ‘no_slip’)








Examples:

slit.set_params(H=8.)
slit.set_params(V=2.0)
slit.set_params(boundary='slip')
slit.set_params(H=5, V=0., boundary='no_slip')














	
class hoomd.mpcd.integrate.slit_pore(group, H, L, boundary='no_slip')

	NVE integration with bounce-back rules in a slit pore channel.


	Parameters

	
	group (hoomd.group) – Group of particles on which to apply this method.


	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width.


	L (float [https://docs.python.org/3/library/functions.html#float]) – pore half-length.


	boundary – ‘slip’ or ‘no_slip’ boundary condition at wall (default: ‘no_slip’)








This integration method applies to particles in group in the parallel-plate (slit) pore geometry.
This method is the MD analog of stream.slit_pore, which documents additional details
about the geometry.

A hoomd.compute.thermo is automatically specified and associated with group.

Examples:

all = group.all()
slit_pore = mpcd.integrate.slit_pore(group=all, H=10.0, L=10.)






New in version 2.7.




	
disable()

	Disables the integration method.

Examples:

method.disable()





Executing the disable command will remove the integration method from the simulation.
Any hoomd.run() command executed after disabling an integration method will
not apply the integration method to the particles during the
simulation. A disabled integration method can be re-enabled with enable().






	
enable()

	Enables the integration method.

Examples:

method.enable()






See also

disable().








	
set_params(H=None, L=None, boundary=None)

	Set parameters for the slit pore geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width.


	L (float [https://docs.python.org/3/library/functions.html#float]) – pore half-length.


	boundary – ‘slip’ or ‘no_slip’ boundary condition at wall (default: ‘no_slip’)








Examples:

slit_pore.set_params(H=8.)
slit_pore.set_params(L=2.0)
slit_pore.set_params(boundary='slip')
slit_pore.set_params(H=5, L=4., boundary='no_slip')
















          

      

      

    

  

    
      
          
            
  
mpcd.stream

Overview







	bulk

	Bulk fluid streaming geometry.



	slit

	Parallel plate (slit) streaming geometry.



	slit_pore

	Parallel plate (slit) pore streaming geometry.






Details

MPCD streaming methods

An MPCD streaming method is required to update the particle positions over time.
It is meant to be used in conjunction with an integrator
and collision method (see collide). Particle positions are
propagated ballistically according to Newton’s equations using a velocity-Verlet
scheme for a time \(\Delta t\):


\[ \begin{align}\begin{aligned}\mathbf{v}(t + \Delta t/2) &= \mathbf{v}(t) + (\mathbf{f}/m)(\Delta t / 2)\\\mathbf{r}(t+\Delta t) &= \mathbf{r}(t) + \mathbf{v}(t+\Delta t/2) \Delta t\\\mathbf{v}(t + \Delta t) &= \mathbf{v}(t + \Delta t/2) + (\mathbf{f}/m)(\Delta t / 2)\end{aligned}\end{align} \]

where r and v are the particle position and velocity, respectively, and f
is the external force acting on the particles of mass m. For a list of forces
that can be applied, see mpcd.force.

Since one of the main strengths of the MPCD algorithm is that it can be coupled to
complex boundaries, the streaming geometry can be configured. MPCD solvent particles
will be reflected from boundary surfaces using specular reflections (bounce-back)
rules consistent with either “slip” or “no-slip” hydrodynamic boundary conditions.
(The external force is only applied to the particles at the beginning and the end
of this process.) To help fully enforce the boundary conditions, “virtual” MPCD
particles can be inserted near the boundary walls.

Although a streaming geometry is enforced on the MPCD solvent particles, there are
a few important caveats:



	Embedded particles are not coupled to the boundary walls. They must be confined
by an appropriate method, e.g., an external potential, an explicit particle wall,
or a bounce-back method (see mpcd.integrate).


	The confined geometry exists inside a fully periodic simulation box. Hence, the
box must be padded large enough that the MPCD cells do not interact through the
periodic boundary. Usually, this means adding at least one extra layer of cells
in the confined dimensions. Your periodic simulation box will be validated by
the confined geometry.


	It is an error for MPCD particles to lie “outside” the confined geometry. You
must initialize your system carefully using the snapshot interface to ensure
all particles are “inside” the geometry. An error will be raised otherwise.








	
class hoomd.mpcd.stream.bulk(period=1)

	Bulk fluid streaming geometry.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of integration steps between collisions.





bulk performs the streaming step for MPCD particles in a fully
periodic geometry (2D or 3D). This geometry is appropriate for modeling
bulk fluids. The streaming time \(\Delta t\) is equal to period steps
of the integrator. For a pure MPCD fluid,
typically period should be 1. When particles are embedded in the MPCD fluid
through the collision step, period should be equal to the MPCD collision
period for best performance. The MPCD particle positions will be updated
every time the simulation timestep is a multiple of period. This is
equivalent to setting a phase of 0 using the terminology of other
periodic update methods.

Example for pure MPCD fluid:

mpcd.integrator(dt=0.1)
mpcd.collide.srd(seed=42, period=1, angle=130.)
mpcd.stream.bulk(period=1)





Example for embedded particles:

mpcd.integrator(dt=0.01)
mpcd.collide.srd(seed=42, period=10, angle=130., group=hoomd.group.all())
mpcd.stream.bulk(period=10)






	
disable()

	Disable the streaming method

Examples:

method.disable()





Disabling the streaming method removes it from the current MPCD system definition.
Only one streaming method can be attached to the system at any time, so
use this method to remove the current streaming method before adding another.






	
enable()

	Enable the streaming method

Examples:

method.enable()





Enabling the streaming method adds it to the current MPCD system definition.
Only one streaming method can be attached to the system at any time.
If another method is already set, disable() must be called
first before switching. Streaming will occur when the timestep is the next
multiple of period.






	
remove_force()

	Remove the external force field for streaming.


Warning

This only removes the force on the MPCD particles. If you have embedded
particles, you must separately disable any corresponding external force.



Example:

streamer.remove_force()










	
set_force(force)

	Set the external force field for streaming.


	Parameters

	force (mpcd.force) – External force field to apply to MPCD particles.





Setting an external force will generate a flow of the MPCD particles subject to the
boundary conditions of the streaming geometry. Note that the force field should be
chosen in a way that makes sense for the geometry (e.g., so that the box is not
continually accelerating).


Warning

The force applies only to the MPCD particles. If you have embedded
particles, you should usually additionally specify a force from md.force
for that particle group.



Examples:

f = mpcd.force.constant(field=(1.0,0.0,0.0))
streamer.set_force(f)










	
set_period(period)

	Set the streaming period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New streaming period.





The MPCD streaming period can only be changed to a new value on a
simulation timestep that is a multiple of both the previous period
and the new period. An error will be raised if it is not.

Examples:

# The initial period is 5.
# The period can be updated to 2 on step 10.
hoomd.run_upto(10)
method.set_period(period=2)

# The period can be updated to 4 on step 12.
hoomd.run_upto(12)
hoomd.set_period(period=4)














	
class hoomd.mpcd.stream.slit(H, V=0.0, boundary='no_slip', period=1)

	Parallel plate (slit) streaming geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	V (float [https://docs.python.org/3/library/functions.html#float]) – wall speed (default: 0)


	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – boundary condition at wall (“slip” or “no_slip””)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of integration steps between collisions








The slit geometry represents a fluid confined between two infinite parallel
plates. The slit is centered around the origin, and the walls are placed
at \(z=-H\) and \(z=+H\), so the total channel width is 2H.
The walls may be put into motion, moving with speeds \(-V\) and
\(+V\) in the x direction, respectively. If combined with a
no-slip boundary condition, this motion can be used to generate simple
shear flow.

The “inside” of the slit is the space where \(|z| < H\).

Examples:

stream.slit(period=10, H=30.)
stream.slit(period=1, H=25., V=0.1)






New in version 2.6.




	
disable()

	Disable the streaming method

Examples:

method.disable()





Disabling the streaming method removes it from the current MPCD system definition.
Only one streaming method can be attached to the system at any time, so
use this method to remove the current streaming method before adding another.






	
enable()

	Enable the streaming method

Examples:

method.enable()





Enabling the streaming method adds it to the current MPCD system definition.
Only one streaming method can be attached to the system at any time.
If another method is already set, disable() must be called
first before switching. Streaming will occur when the timestep is the next
multiple of period.






	
remove_filler()

	Remove the virtual particle filler.

Example:

slit.remove_filler()






New in version 2.6.








	
remove_force()

	Remove the external force field for streaming.


Warning

This only removes the force on the MPCD particles. If you have embedded
particles, you must separately disable any corresponding external force.



Example:

streamer.remove_force()










	
set_filler(density, kT, seed, type='A')

	Add virtual particles to slit channel.


	Parameters

	
	density (float [https://docs.python.org/3/library/functions.html#float]) – Density of virtual particles.


	kT (float [https://docs.python.org/3/library/functions.html#float]) – Temperature of virtual particles.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed to pseudo-random number generator for virtual particles.


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the MPCD particles to fill with.








The virtual particle filler draws particles within the volume outside the
slit walls that could be overlapped by any cell that is partially inside
the slit channel (between the parallel plates). The particles are drawn from
the velocity distribution consistent with kT and with the given density.
The mean of the distribution is zero in y and z, but is equal to the wall
speed in x. Typically, the virtual particle density and temperature are set
to the same conditions as the solvent.

The virtual particles will act as a weak thermostat on the fluid, and so energy
is no longer conserved. Momentum will also be sunk into the walls.

Example:

slit.set_filler(density=5.0, kT=1.0, seed=42)






New in version 2.6.








	
set_force(force)

	Set the external force field for streaming.


	Parameters

	force (mpcd.force) – External force field to apply to MPCD particles.





Setting an external force will generate a flow of the MPCD particles subject to the
boundary conditions of the streaming geometry. Note that the force field should be
chosen in a way that makes sense for the geometry (e.g., so that the box is not
continually accelerating).


Warning

The force applies only to the MPCD particles. If you have embedded
particles, you should usually additionally specify a force from md.force
for that particle group.



Examples:

f = mpcd.force.constant(field=(1.0,0.0,0.0))
streamer.set_force(f)










	
set_params(H=None, V=None, boundary=None)

	Set parameters for the slit geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	V (float [https://docs.python.org/3/library/functions.html#float]) – wall speed (default: 0)


	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – boundary condition at wall (“slip” or “no_slip””)








Changing any of these parameters will require the geometry to be
constructed and validated, so do not change these too often.

Examples:

slit.set_params(H=15.0)
slit.set_params(V=0.2, boundary="no_slip")






New in version 2.6.








	
set_period(period)

	Set the streaming period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New streaming period.





The MPCD streaming period can only be changed to a new value on a
simulation timestep that is a multiple of both the previous period
and the new period. An error will be raised if it is not.

Examples:

# The initial period is 5.
# The period can be updated to 2 on step 10.
hoomd.run_upto(10)
method.set_period(period=2)

# The period can be updated to 4 on step 12.
hoomd.run_upto(12)
hoomd.set_period(period=4)














	
class hoomd.mpcd.stream.slit_pore(H, L, boundary='no_slip', period=1)

	Parallel plate (slit) pore streaming geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	L (float [https://docs.python.org/3/library/functions.html#float]) – pore half-length


	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – boundary condition at wall (“slip” or “no_slip””)


	period (int [https://docs.python.org/3/library/functions.html#int]) – Number of integration steps between collisions








The slit pore geometry represents a fluid partially confined between two
parallel plates that have finite length in x. The slit pore is centered
around the origin, and the walls are placed at \(z=-H\) and
\(z=+H\), so the total channel width is 2H. They extend from
\(x=-L\) to \(x=+L\) (total length 2L), where additional solid walls
with normals in x prevent penetration into the regions above / below the
plates. The plates are infinite in y. Outside the pore, the simulation box
has full periodic boundaries; it is not confined by any walls. This model
hence mimics a narrow pore in, e.g., a membrane.

[image: _images/mpcd_slit_pore.png]
The “inside” of the slit_pore is the space where
\(|z| < H\) for \(|x| < L\), and the entire space where
\(|x| \ge L\).

Examples:

stream.slit_pore(period=10, H=30., L=10.)
stream.slit_pore(period=1, H=25., L=25.)






New in version 2.7.




	
disable()

	Disable the streaming method

Examples:

method.disable()





Disabling the streaming method removes it from the current MPCD system definition.
Only one streaming method can be attached to the system at any time, so
use this method to remove the current streaming method before adding another.






	
enable()

	Enable the streaming method

Examples:

method.enable()





Enabling the streaming method adds it to the current MPCD system definition.
Only one streaming method can be attached to the system at any time.
If another method is already set, disable() must be called
first before switching. Streaming will occur when the timestep is the next
multiple of period.






	
remove_filler()

	Remove the virtual particle filler.

Example:

slit_pore.remove_filler()










	
remove_force()

	Remove the external force field for streaming.


Warning

This only removes the force on the MPCD particles. If you have embedded
particles, you must separately disable any corresponding external force.



Example:

streamer.remove_force()










	
set_filler(density, kT, seed, type='A')

	Add virtual particles to slit pore.


	Parameters

	
	density (float [https://docs.python.org/3/library/functions.html#float]) – Density of virtual particles.


	kT (float [https://docs.python.org/3/library/functions.html#float]) – Temperature of virtual particles.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Seed to pseudo-random number generator for virtual particles.


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of the MPCD particles to fill with.








The virtual particle filler draws particles within the volume outside the
slit pore boundaries that could be overlapped by any cell that is partially inside
the slit pore. The particles are drawn from the velocity distribution consistent
with kT and with the given density. The mean of the distribution is zero in
x, y, and z. Typically, the virtual particle density and temperature are set
to the same conditions as the solvent.

The virtual particles will act as a weak thermostat on the fluid, and so energy
is no longer conserved. Momentum will also be sunk into the walls.

Example:

slit_pore.set_filler(density=5.0, kT=1.0, seed=42)










	
set_force(force)

	Set the external force field for streaming.


	Parameters

	force (mpcd.force) – External force field to apply to MPCD particles.





Setting an external force will generate a flow of the MPCD particles subject to the
boundary conditions of the streaming geometry. Note that the force field should be
chosen in a way that makes sense for the geometry (e.g., so that the box is not
continually accelerating).


Warning

The force applies only to the MPCD particles. If you have embedded
particles, you should usually additionally specify a force from md.force
for that particle group.



Examples:

f = mpcd.force.constant(field=(1.0,0.0,0.0))
streamer.set_force(f)










	
set_params(H=None, L=None, boundary=None)

	Set parameters for the slit geometry.


	Parameters

	
	H (float [https://docs.python.org/3/library/functions.html#float]) – channel half-width


	L (float [https://docs.python.org/3/library/functions.html#float]) – pore half-length


	boundary (str [https://docs.python.org/3/library/stdtypes.html#str]) – boundary condition at wall (“slip” or “no_slip””)








Changing any of these parameters will require the geometry to be
constructed and validated, so do not change these too often.

Examples:

slit_pore.set_params(H=15.0)
slit_pore.set_params(L=10.0, boundary="no_slip")










	
set_period(period)

	Set the streaming period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New streaming period.





The MPCD streaming period can only be changed to a new value on a
simulation timestep that is a multiple of both the previous period
and the new period. An error will be raised if it is not.

Examples:

# The initial period is 5.
# The period can be updated to 2 on step 10.
hoomd.run_upto(10)
method.set_period(period=2)

# The period can be updated to 4 on step 12.
hoomd.run_upto(12)
hoomd.set_period(period=4)
















          

      

      

    

  

    
      
          
            
  
mpcd.update

Overview







	sort

	Sorts MPCD particles in memory to improve cache coherency.






Details

MPCD particle updaters

Updates properties of MPCD particles.


	
class hoomd.mpcd.update.sort(system, period=50)

	Sorts MPCD particles in memory to improve cache coherency.


	Parameters

	
	system (hoomd.mpcd.data.system) – MPCD system to create sorter for


	period (int [https://docs.python.org/3/library/functions.html#int]) – Sort whenever the timestep is a multiple of period.
.. versionadded:: 2.6









Warning

Do not create hoomd.mpcd.update.sort explicitly in your script.
HOOMD creates a sorter by default.



Every period time steps, particles are reordered in memory based on
the cell list generated at the current timestep. Sorting can significantly improve
performance of all other cell-based steps of the MPCD algorithm. The efficiency of
the sort operation obviously depends on the number of particles, and so the period
should be tuned to give the maximum performance.


Note

The period should be no smaller than the MPCD collision period, or unnecessary
cell list builds will occur.



Essentially all MPCD systems benefit from sorting, and so a sorter is created by
default with the MPCD system. To disable it or modify parameters, save the system
and access the sorter through it:

s = mpcd.init.read_snapshot(snap)
# the sorter is only available after initialization
s.sorter.set_period(period=5)
s.sorter.disable()






	
set_period(period)

	Change the sorting period.


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set.





Examples:

sorter.set_period(100)
sorter.set_period(1)





While the simulation is running, the action of each updater
is executed every period time steps. Changing the period does
not change the phase set when the analyzer was first created.






	
tune(start, stop, step, tsteps, quiet=False)

	Tune the sorting period.


	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Start of tuning interval to scan (inclusive).


	stop (int [https://docs.python.org/3/library/functions.html#int]) – End of tuning interval to scan (inclusive).


	step (int [https://docs.python.org/3/library/functions.html#int]) – Spacing between tuning points.


	tsteps (int [https://docs.python.org/3/library/functions.html#int]) – Number of timesteps to run at each tuning point.


	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Quiet the individual run calls.






	Returns

	The optimal sorting period from the scanned range.



	Return type

	int [https://docs.python.org/3/library/functions.html#int]





The optimal sorting period for the MPCD particles is determined from
a sequence of short runs. The sorting period is first set to start.
The TPS value is determined for a run of length tsteps. This run is
repeated 3 times, and the median TPS of the runs is saved. The sorting
period is then incremented by step, and the process is repeated until
stop is reached. The period giving the fastest TPS is determined, and
the sorter period is updated to this value. The results of the scan
are also reported as output, and the fastest sorting period is also
returned.


Note

A short warmup run is required before calling tune()
in order to ensure the runtime autotuners have found optimal
kernel launch parameters.



Examples:

# warmup run
hoomd.run(5000)

# tune sorting period
sorter.tune(start=5, stop=50, step=5, tsteps=1000)
















          

      

      

    

  

    
      
          
            
  
dem

Details

Simulate rounded, faceted shapes in molecular dynamics.

The DEM component provides forces which apply short-range, purely
repulsive interactions between contact points of two shapes. The
resulting interaction is consistent with expanding the given polygon
or polyhedron by a disk or sphere of a particular rounding radius.

The pair forces located in hoomd.dem.pair behave like other
hoomd pair forces, computing forces and torques for each particle
based on its interactions with its neighbors. Also included are
geometric helper utilities in hoomd.dem.utils.


Initialization

When initializing systems, be sure to set the inertia tensor of DEM
particles. Axes with an inertia tensor of 0 (the default) will not
have their rotational degrees of freedom integrated. Because only the
three principal components of inertia are given to hoomd, particle
vertices should also be specified in the principal reference frame so
that the inertia tensor is diagonal.

Example:

snap = hoomd.data.make_snapshot(512, box=hoomd.data.boxdim(L=10))
snap.particles.moment_inertia[:] = (10, 10, 10)
system = hoomd.init.read_snapshot(snap)







Integration

To allow particles to rotate, use integrators which can update
rotational degrees of freedom:



	hoomd.md.integrate.nve


	hoomd.md.integrate.nvt


	hoomd.md.integrate.npt


	hoomd.md.integrate.langevin


	hoomd.md.integrate.brownian







Note that the Nosé-Hoover thermostats used in
hoomd.md.integrate.nvt and hoomd.md.integrate.npt
work by rescaling momenta and angular momenta. This can lead to
instabilities in the start of the simulation if particles are
initialized with 0 angular momentum and no neighbor interactions. Two
easy fixes for this problem are to initialize each particle with some
angular momentum or to first run for a few steps with
hoomd.md.integrate.langevin or
hoomd.md.integrate.brownian.



Data Storage

To store trajectories of DEM systems, use a format that knows about
anisotropic particles, such as:



	hoomd.dump.getar


	hoomd.dump.gsd







Stability

hoomd.dem is stable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts that follow documented interfaces for functions and classes
will not require any modifications. Maintainer: Matthew Spellings.


Modules



	dem.pair

	dem.utils








          

      

      

    

  

    
      
          
            
  
dem.pair

Overview







	WCA

	



	SWCA

	






Details

DEM pair potentials.


	
class hoomd.dem.pair.SWCA(nlist, radius=1.0, d_max=None)

	Specify a purely repulsive Weeks-Chandler-Andersen DEM force with a particle-varying rounding radius.


	Parameters

	
	nlist (hoomd.md.nlist) – Neighbor list to use


	radius (float [https://docs.python.org/3/library/functions.html#float]) – Unshifted rounding radius \(r\) to apply to the shape vertices


	d_max (float [https://docs.python.org/3/library/functions.html#float]) – maximum rounding diameter among all particles in the system








The SWCA potential enables simulation of particles with
heterogeneous rounding radii. The effect is as if a
hoomd.md.pair.slj interaction with
\(r_{cut}=2^{1/6}\sigma\) and \(\sigma=2\cdot r\) were
applied between the contact points of each pair of particles.

Examples:

# 2D system of squares
squares = hoomd.dem.pair.SWCA(radius=.5)
squares.setParams('A', [[1, 1], [-1, 1], [-1, -1], [1, -1]])
# 3D system of rounded square plates
squarePlates = hoomd.dem.pair.SWCA(radius=.5)
squarePlates.setParams('A',
    vertices=[[1, 1, 0], [-1, 1, 0], [-1, -1, 0], [1, -1, 0]],
    faces=[[0, 1, 2, 3]], center=False)
# 3D system of some convex shape specified by vertices
(vertices, faces) = hoomd.dem.utils.convexHull(vertices)
shapes = hoomd.dem.pair.SWCA(radius=.5)
shapes.setParams('A', vertices=vertices, faces=faces)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

This assumes all 3D shapes are convex.

Examples

Types depend on the number of shape vertices and system dimensionality.
One vertex will yield a Sphere (2D and 3D), while multiple vertices will
give a Polygon (2D) or ConvexPolyhedron (3D).

>>> mc.get_type_shapes()  # one vertex in 3D
[{'type': 'Sphere', 'diameter': 1.0}]
>>> mc.get_type_shapes()  # one vertex in 2D
[{'type': 'Sphere', 'diameter': 1.5}]
>>> mc.get_type_shapes()  # multiple vertices in 3D
[{'type': 'ConvexPolyhedron', 'rounding_radius': 0.1,
  'vertices': [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5],
               [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]]}]
>>> mc.get_type_shapes()  # multiple vertices in 2D
[{'type': 'Polygon', 'rounding_radius': 0.1,
  'vertices': [[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.










	
setParams2D(type, vertices, center=False)

	Set the vertices for a given particle type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the type to set the shape of


	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (2D) points specifying the coordinates of the shape


	center (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, subtract the center of mass of the shape from the vertices before setting them for the shape








Shapes are specified as a list of 2D coordinates. Edges will
be made between all adjacent pairs of vertices, including one
between the last and first vertex.






	
setParams3D(type, vertices, faces, center=False)

	Set the vertices for a given particle type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the type to set the shape of


	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (3D) points specifying the coordinates of the shape


	faces (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of lists of indices specifying which coordinates comprise each face of a shape.


	center (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, subtract the center of mass of the shape from the vertices before setting them for the shape








Shapes are specified as a list of coordinates (vertices) and
another list containing one list for each polygonal face
(faces). The elements of each list inside faces are
integer indices specifying which vertex in vertices comprise
the face.






	
update_coeffs()

	Noop for this potential










	
class hoomd.dem.pair.WCA(nlist, radius=1.0)

	Specify a purely repulsive Weeks-Chandler-Andersen DEM force with a constant rounding radius.


	Parameters

	
	nlist (hoomd.md.nlist) – Neighbor list to use


	radius (float [https://docs.python.org/3/library/functions.html#float]) – Rounding radius \(r\) to apply to the shape vertices








The effect is as if a hoomd.md.pair.lj interaction
with \(r_{cut}=2^{1/6}\sigma\) and \(\sigma=2\cdot r\)
were applied between the contact points of each pair of particles.

Examples:

# 2D system of squares
squares = hoomd.dem.pair.WCA(radius=.5)
squares.setParams('A', [[1, 1], [-1, 1], [-1, -1], [1, -1]])
# 3D system of rounded square plates
squarePlates = hoomd.dem.pair.WCA(radius=.5)
squarePlates.setParams('A',
    vertices=[[1, 1, 0], [-1, 1, 0], [-1, -1, 0], [1, -1, 0]],
    faces=[[0, 1, 2, 3]], center=False)
# 3D system of some convex shape specified by vertices
(vertices, faces) = hoomd.dem.utils.convexHull(vertices)
shapes = hoomd.dem.pair.WCA(radius=.5)
shapes.setParams('A', vertices=vertices, faces=faces)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
get_type_shapes()

	Get all the types of shapes in the current simulation.

This assumes all 3D shapes are convex.

Examples

Types depend on the number of shape vertices and system dimensionality.
One vertex will yield a Sphere (2D and 3D), while multiple vertices will
give a Polygon (2D) or ConvexPolyhedron (3D).

>>> mc.get_type_shapes()  # one vertex in 3D
[{'type': 'Sphere', 'diameter': 1.0}]
>>> mc.get_type_shapes()  # one vertex in 2D
[{'type': 'Sphere', 'diameter': 1.5}]
>>> mc.get_type_shapes()  # multiple vertices in 3D
[{'type': 'ConvexPolyhedron', 'rounding_radius': 0.1,
  'vertices': [[0.5, 0.5, 0.5], [0.5, -0.5, -0.5],
               [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5]]}]
>>> mc.get_type_shapes()  # multiple vertices in 2D
[{'type': 'Polygon', 'rounding_radius': 0.1,
  'vertices': [[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]]}]






	Returns

	A list of dictionaries, one for each particle type in the system.










	
setParams2D(type, vertices, center=False)

	Set the vertices for a given particle type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the type to set the shape of


	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (2D) points specifying the coordinates of the shape


	center (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, subtract the center of mass of the shape from the vertices before setting them for the shape








Shapes are specified as a list of 2D coordinates. Edges will
be made between all adjacent pairs of vertices, including one
between the last and first vertex.






	
setParams3D(type, vertices, faces, center=False)

	Set the vertices for a given particle type.


	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the type to set the shape of


	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (3D) points specifying the coordinates of the shape


	faces (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of lists of indices specifying which coordinates comprise each face of a shape.


	center (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, subtract the center of mass of the shape from the vertices before setting them for the shape








Shapes are specified as a list of coordinates (vertices) and
another list containing one list for each polygonal face
(faces). The elements of each list inside faces are
integer indices specifying which vertex in vertices comprise
the face.






	
update_coeffs()

	Noop for this potential












          

      

      

    

  

    
      
          
            
  
dem.utils

Overview

Details

Various helper utilities for geometry.


	
hoomd.dem.utils.area(vertices, factor=1.0)

	Computes the signed area of a polygon in 2 or 3D.


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – (x, y) or (x, y, z) coordinates for each vertex


	factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor to scale the resulting area by













	
hoomd.dem.utils.center(vertices, faces=None)

	Centers shapes in 2D or 3D.


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (x, y) or (x, y, z) coordinates in 2D or 3D, respectively


	faces (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of vertex indices for 3D polyhedra, or None for 2D. Faces should be in right-hand order.








Returns a list of vertices shifted to have the center of mass of
the given points at the origin. Shapes should be specified in
right-handed order. If the input shape has no mass, return the
input.


Warning

All faces should be specified in right-handed order.








	
hoomd.dem.utils.convexHull(vertices, tol=1e-06)

	Compute the 3D convex hull of a set of vertices and merge coplanar faces.


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (x, y, z) coordinates


	tol (float [https://docs.python.org/3/library/functions.html#float]) – Floating point tolerance for merging coplanar faces








Returns an array of vertices and a list of faces (vertex
indices) for the convex hull of the given set of vertice.


Note

This method uses scipy’s quickhull wrapper and therefore requires scipy.








	
hoomd.dem.utils.massProperties(vertices, faces=None, factor=1.0)

	Compute the mass, center of mass, and inertia tensor of a polygon or polyhedron


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (x, y) or (x, y, z) coordinates in 2D or 3D, respectively


	faces (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of vertex indices for 3D polyhedra, or None for 2D. Faces should be in right-hand order.


	factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor to scale the resulting results by








Returns (mass, center of mass, moment of inertia tensor in (xx,
xy, xz, yy, yz, zz) order) specified by the given list of vertices
and faces. Note that the faces must be listed in a consistent
order so that normals are all pointing in the correct direction
from the face. If given a list of 2D vertices, return the same but
for the 2D polygon specified by the vertices.


Warning

All faces should be specified in right-handed order.



The computation for the 3D case follows “Polyhedral Mass
Properties (Revisited) by David Eberly, available at:

http://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf






	
hoomd.dem.utils.rmax(vertices, radius=0.0, factor=1.0)

	Compute the maximum distance among a set of vertices


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of (x, y) or (x, y, z) coordinates


	factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor to scale the result by













	
hoomd.dem.utils.spheroArea(vertices, radius=1.0, factor=1.0)

	Computes the area of a spheropolygon.


	Parameters

	
	vertices (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of (x, y) coordinates, in right-handed (counterclockwise) order


	radius (float [https://docs.python.org/3/library/functions.html#float]) – Rounding radius of the disk to expand the polygon by


	factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor to scale the resulting area by















          

      

      

    

  

    
      
          
            
  
cgcmm

Details

CGCMM

Coarse grained CGCMM potential.

Stability

hoomd.cgcmm is unstable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts may need to be updated. Maintainer needed! This package is not maintained.


Deprecated since version 2.6: The cgcmm component has not been maintained in many years and will be removed.



Modules



	cgcmm.angle

	cgcmm.pair








          

      

      

    

  

    
      
          
            
  
cgcmm.angle

Overview







	cgcmm.angle.cgcmm

	






Details

CGCMM angle potentials.


	
class hoomd.cgcmm.angle.cgcmm

	CGCMM angle potential.

The command angle.cgcmm defines a regular harmonic potential energy between every defined triplet
of particles in the simulation, but in addition in adds the repulsive part of a CGCMM pair potential
between the first and the third particle.

B. Levine et. al. 2011 [http://dx.doi.org/10.1021/ct2005193] describes the CGCMM implementation details in
HOOMD-blue. Cite it if you utilize the CGCMM potential in your work.

The total potential is thus:


\[V(\theta) = \frac{1}{2} k \left( \theta - \theta_0 \right)^2\]

where \(\theta\) is the current angle between the three particles
and either:


\[V_{\mathrm{LJ}}(r_{13}) -V_{\mathrm{LJ}}(r_c) \mathrm{~with~~~} V_{\mathrm{LJ}}(r) = 4 \varepsilon \left[
\left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right]
\mathrm{~~~~for~} r <= r_c \mathrm{~~~} r_c = \sigma \cdot 2^{\frac{1}{6}}\]


\[V_{\mathrm{LJ}}(r_{13}) -V_{\mathrm{LJ}}(r_c) \mathrm{~with~~~}
V_{\mathrm{LJ}}(r) = \frac{27}{4} \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{9} -
\left( \frac{\sigma}{r} \right)^{6} \right]
\mathrm{~~~~for~} r <= r_c \mathrm{~~~} r_c = \sigma \cdot \left(\frac{3}{2}\right)^{\frac{1}{3}}\]


\[V_{\mathrm{LJ}}(r_{13}) -V_{\mathrm{LJ}}(r_c) \mathrm{~with~~~}
V_{\mathrm{LJ}}(r) = \frac{3\sqrt{3}}{2} \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
\left( \frac{\sigma}{r} \right)^{4} \right]
\mathrm{~~~~for~} r <= r_c \mathrm{~~~} r_c = \sigma \cdot 3^{\frac{1}{8}}\]

with \(r_{13}\) being the distance between the two outer particles of the angle.

Coefficients:


	\(\theta_0\) - rest angle t0 (in radians)


	\(k\) - potential constant k (in units of energy/radians^2)


	\(\varepsilon\) - strength of potential epsilon (in energy units)


	\(\sigma\) - distance of interaction sigma (in distance units)




Coefficients \(k, \theta_0, \varepsilon\), and \(\sigma\) and Lennard-Jones exponents pair must be set for
each type of angle in the simulation using set_coeff().


	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)






	
set_coeff(angle_type, k, t0, exponents, epsilon, sigma)

	Sets the CG-CMM angle coefficients for a particular angle type.


	Parameters

	
	angle_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Angle type to set coefficients for


	k (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient \(k\) (in units of energy/radians^2)


	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient \(\theta_0\) (in radians)


	exponents (str [https://docs.python.org/3/library/stdtypes.html#str]) – is the type of CG-angle exponents we want to use for the repulsion.


	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – is the 1-3 repulsion strength (in energy units)


	sigma (float [https://docs.python.org/3/library/functions.html#float]) – is the CG particle radius (in distance units)








Examples:

cgcmm.set_coeff('polymer', k=3.0, t0=0.7851, exponents=126, epsilon=1.0, sigma=0.53)
cgcmm.set_coeff('backbone', k=100.0, t0=1.0, exponents=96, epsilon=23.0, sigma=0.1)
cgcmm.set_coeff('residue', k=100.0, t0=1.0, exponents='lj12_4', epsilon=33.0, sigma=0.02)
cgcmm.set_coeff('cg96', k=100.0, t0=1.0, exponents='LJ9-6', epsilon=9.0, sigma=0.3)
















          

      

      

    

  

    
      
          
            
  
cgcmm.pair

Overview







	cgcmm.pair.cgcmm

	CMM coarse-grain model pair potential.






Details

CGCMM pair potentials.


	
class hoomd.cgcmm.pair.cgcmm(r_cut, nlist)

	CMM coarse-grain model pair potential.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Default cutoff radius (in distance units).


	nlist (hoomd.md.nlist) – Neighbor list








cgcmm specifies that a special version of Lennard-Jones pair force
should be added to every non-bonded particle pair in the simulation. This potential
version is used in the CMM coarse grain model and uses a combination of Lennard-Jones
potentials with different exponent pairs between different atom pairs.

B. Levine et. al. 2011 [http://dx.doi.org/10.1021/ct2005193] describes the CGCMM implementation details in
HOOMD-blue. Cite it if you utilize the CGCMM potential in your work.

Multiple potential functions can be selected:


\[ \begin{align}\begin{aligned}V_{\mathrm{LJ}}(r) = 4 \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                                          \alpha \left( \frac{\sigma}{r} \right)^{6} \right]\\V_{\mathrm{LJ}}(r) = \frac{27}{4} \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{9} -
                                                     \alpha \left( \frac{\sigma}{r} \right)^{6} \right]\\V_{\mathrm{LJ}}(r) = \frac{3\sqrt{3}}{2} \varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} -
                                                       \alpha \left( \frac{\sigma}{r} \right)^{4} \right]\end{aligned}\end{align} \]

See hoomd.md.pair.pair for details on how forces are calculated and the available energy shifting and smoothing modes.
Use pair_coeff.set to set potential coefficients.

The following coefficients must be set per unique pair of particle types:


	\(\varepsilon\) - epsilon (in energy units)


	\(\sigma\) - sigma (in distance units)


	\(\alpha\) - alpha (unitless) - optional: defaults to 1.0


	exponents, the choice of LJ-exponents, currently supported are 12-6, 9-6, and 12-4.




We support three keyword variants 124 (native), lj12_4 (LAMMPS), LJ12-4 (MPDyn).

Example:

nl = nlist.cell()
cg = pair.cgcmm(r_cut=3.0, nlist=nl)
cg.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0, alpha=1.0, exponents='LJ12-6')
cg.pair_coeff.set('W', 'W', epsilon=3.7605, sigma=1.285588, alpha=1.0, exponents='lj12_4')
cg.pair_coeff.set('OA', 'OA', epsilon=1.88697479, sigma=1.09205882, alpha=1.0, exponents='96')






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
deprecated

Details

Deprecated functionalities

Commands in the hoomd.deprecated package are leftovers from previous versions of HOOMD-blue that are
kept temporarily for users whose workflow depends on them. Deprecated features may be removed in a future version.

Stability

hoomd.deprecated is deprecated. When upgrad from version 2.x to 2.y (y > x),
functions and classes in the package may be removed. Continued support for features in this
package is not provided. These legacy functions will remain as long as they require minimal
code modifications to maintain. Maintainer: not maintained.

Modules



	deprecated.analyze

	deprecated.dump

	deprecated.init








          

      

      

    

  

    
      
          
            
  
deprecated.analyze

Overview







	deprecated.analyze.msd

	Mean-squared displacement.






Details

Deprecated analyzers.


	
class hoomd.deprecated.analyze.msd(filename, groups, period, header_prefix='', r0_file=None, overwrite=False, phase=0)

	Mean-squared displacement.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to write the data to.


	groups (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of groups to calculate the MSDs of.


	period (int [https://docs.python.org/3/library/functions.html#int]) – Quantities are logged every period time steps.


	header_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Specify a string to print before the header.


	r0_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – hoomd_xml file specifying the positions (and images) to use for \(\vec{r}_0\).


	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – set to True to overwrite the file filename if it exists.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.









Deprecated since version 2.0: analyze.msd will be replaced by a more general system capable of window averaging in a future release.



msd can be given any number of groups of particles. Every period time steps, it calculates the mean squared
displacement of each group (referenced to the particle positions at the time step the command is issued at) and prints
the calculated values out to a file.

The mean squared displacement (MSD) for each group is calculated as:


\[\langle |\vec{r} - \vec{r}_0|^2 \rangle\]

and values are correspondingly written in units of distance squared.

The file format is the same convenient delimited format used by :py:class`hoomd.analyze.log`.

msd is capable of appending to an existing msd file (the default setting) for use in restarting in long jobs.
To generate a correct msd that does not reset to 0 at the start of each run, save the initial state of the system
in a hoomd_xml file, including position and image data at a minimum. In the continuation job, specify this file
in the r0_file argument to analyze.msd.

Examples:

msd = analyze.msd(filename='msd.log', groups=[group1, group2],
                  period=100)

analyze.msd(groups=[group1, group2, group3], period=1000,
            filename='msd.log', header_prefix='#')

analyze.msd(filename='msd.log', groups=[group1], period=10,
            header_prefix='Log of group1 msd, run 5\n')





A group variable (groupN above) can be created by any number of group creation functions.
See group for a list.

By default, columns in the file are separated by tabs, suitable for importing as a
tab-delimited spreadsheet. The delimiter can be changed to any string using set_params().

The header_prefix can be used in a number of ways. It specifies a simple string that
will be printed before the header line of the output file. One handy way to use this
is to specify header_prefix=’#’ so that gnuplot will ignore the header line
automatically. Another use-case would be to specify a descriptive line containing
details of the current run. Examples of each of these cases are given above.

If r0_file is left at the default of None, then the current state of the system at the execution of the
analyze.msd command is used to initialize \(\vec{r}_0\).


	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(delimiter=None)

	Change the parameters of the msd analysis


	Parameters

	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) – New delimiter between columns in the output file (if specified).





Examples:

msd.set_params(delimiter=',');










	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.












          

      

      

    

  

    
      
          
            
  
deprecated.dump

Overview







	deprecated.dump.pos

	Writes simulation snapshots in the POS format



	deprecated.dump.xml

	Writes simulation snapshots in the HOOMD XML format.






Details

Deprecated trajectory file writers.


	
class hoomd.deprecated.dump.pos(filename, period=None, unwrap_rigid=False, phase=0, addInfo=None)

	Writes simulation snapshots in the POS format


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name to write


	period (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Number of time steps between file dumps


	unwrap_rigid (bool [https://docs.python.org/3/library/functions.html#bool]) – When False, (the default) individual particles are written inside
the simulation box which breaks up rigid bodies near box boundaries. When True,
particles belonging to the same rigid body will be unwrapped so that the body
is continuous. The center of mass of the body remains in the simulation box, but
some particles may be written just outside it.


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where (step + phase) % period == 0.


	addInfo (callable) – A user-defined python function that returns a string of additional information when it is called. This
information will be printed in the pos file beneath the shape definitions. The information returned by addInfo
may dynamically change over the course of the simulation; addInfo is a function of the simulation timestep only.









Deprecated since version 2.0.



The file is opened on initialization and a new frame is appended every a period steps.


Warning

pos is not restart compatible. It always overwrites the file on initialization.



Examples:

dump.pos(filename="dump.pos", period=1000)
pos = dump.pos(filename="particles.pos", period=1e5)






	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_def(typ, shape)

	Set a pos def string for a given type


	Parameters

	
	typ (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type name to set shape def


	shape (str [https://docs.python.org/3/library/stdtypes.html#str]) – Shape def string to set













	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.










	
class hoomd.deprecated.dump.xml(group, filename='dump', period=None, time_step=None, phase=0, restart=False, **params)

	Writes simulation snapshots in the HOOMD XML format.


	Parameters

	
	group (hoomd.group) – Group of particles to dump


	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) Base of the file name


	period (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Number of time steps between file dumps


	params – (optional) Any number of parameters that set_params() accepts


	time_step (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Time step to write into the file (overrides the current simulation step). time_step
is ignored for periodic updates


	phase (int [https://docs.python.org/3/library/functions.html#int]) – When -1, start on the current time step. When >= 0, execute on steps where &(step + phase) % period == 0*.


	restart (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, write only filename and don’t save previous states.









Deprecated since version 2.0: GSD is the new default file format for HOOMD-blue. It can store everything that an XML file can in
an efficient binary format that is easy to access. See hoomd.dump.gsd.



Every period time steps, a new file will be created. The state of the
particles in group at that time step is written to the file in the HOOMD XML format.
All values are written in native HOOMD-blue units, see Units for more information.

If you only need to store a subset of the system, you can save file size and time spent analyzing data by
specifying a group to write out. xml will write out all of the particles in group in ascending
tag order. When the group is not hoomd.group.all(), xml will not write the topology fields
(bond, angle, dihedral, improper, constraint).

Examples:

deprecated.dump.xml(group=group.all(), filename="atoms.dump", period=1000)
xml = deprecated.dump.xml(group=group.all(), filename="particles", period=1e5)
xml = deprecated.dump.xml(group=group.all(), filename="test.xml", vis=True)
xml = deprecated.dump.xml(group=group.all(), filename="restart.xml", all=True, restart=True, period=10000, phase=0);
xml = deprecated.dump.xml(group=group.type('A'), filename="A", period=1e3)





If period is set and restart is False, a new file will be created every period steps. The time step at which
the file is created is added to the file name in a fixed width format to allow files to easily
be read in order. I.e. the write at time step 0 with filename="particles" produces the file
particles.0000000000.xml.

If period is set and restart is True, xml will write a temporary file and then move it to filename. This
stores only the most recent state of the simulation in the written file. It is useful for writing jobs that
are restartable - see Restartable jobs. Note that this causes high metadata traffic on lustre filesystems
and may cause your account to be blocked at some supercomputer centers. Use hoomd.dump.gsd for efficient
restart files.

By default, only particle positions are output to the dump files. This can be changed
with set_params(), or by specifying the options in the xml command.

If period is not specified, then no periodic updates will occur. Instead, the file
filename is written immediately. time_step is passed on to write()


	
disable()

	Disable the analyzer.

Examples:

my_analyzer.disable()





Executing the disable command will remove the analyzer from the system.
Any hoomd.run() command executed after disabling an analyzer will not use that
analyzer during the simulation. A disabled analyzer can be re-enabled
with enable().






	
enable()

	Enables the analyzer

Examples:

my_analyzer.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations






	
set_params(all=None, vis=None, position=None, image=None, velocity=None, mass=None, diameter=None, type=None, body=None, bond=None, angle=None, dihedral=None, improper=None, constraint=None, acceleration=None, charge=None, orientation=None, angmom=None, inertia=None, vizsigma=None)

	Change xml write parameters.


	Parameters

	
	all (bool [https://docs.python.org/3/library/functions.html#bool]) – (if True) Enables the output of all optional parameters below


	vis (bool [https://docs.python.org/3/library/functions.html#bool]) – (if True) Enables options commonly used for visualization.
- Specifically, vis=True sets position, mass, diameter, type, body, bond, angle, dihedral, improper, charge


	position (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle positions in the xml file


	image (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle images in the xml file


	velocity (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle velocities in the xml file


	mass (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle masses in the xml file


	diameter (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle diameters in the xml file


	type (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle types in the xml file


	body (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of the particle bodies in the xml file


	bond (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of bonds in the xml file


	angle (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of angles in the xml file


	dihedral (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of dihedrals in the xml file


	improper (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of impropers in the xml file


	constraint (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of constraints in the xml file


	acceleration (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle accelerations in the xml


	charge (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle charge in the xml


	orientation (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle orientations in the xml file


	angmom (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle angular momenta in the xml file


	inertia (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to True/False to enable/disable the output of particle moments of inertia in the xml file


	vizsigma (bool [https://docs.python.org/3/library/functions.html#bool]) – (if set) Set to a floating point value to include as vizsigma in the xml file








Examples:

xml.set_params(type=False)
xml.set_params(position=False, type=False, velocity=True)
xml.set_params(type=True, position=True)
xml.set_params(bond=True)
xml.set_params(all=True)






Attention

The simulation topology (bond, angle, dihedral, improper, constraint) cannot be output when
the group for xml is not hoomd.group.all. An error will
be raised.








	
set_period(period)

	Changes the period between analyzer executions


	Parameters

	period (int [https://docs.python.org/3/library/functions.html#int]) – New period to set (in time steps)





Examples:

analyzer.set_period(100)
analyzer.set_period(1)





While the simulation is running (hoomd.run(), the action of each analyzer
is executed every period time steps. Changing the period does not change the phase set when the analyzer
was first created.






	
write(filename, time_step=None)

	Write a file at the current time step.


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name to write to


	time_step (int [https://docs.python.org/3/library/functions.html#int]) – (if set) Time step value to write out to the file








The periodic file writes can be temporarily overridden and a file with any file name
written at the current time step.

When time_step is None, the current system time step is written to the file. When specified,
time_step overrides this value.

Examples:

xml.write(filename="start.xml")
xml.write(filename="start.xml", time_step=0)










	
write_restart()

	Write a restart file at the current time step.

This only works when dump.xml() is in restart mode. write_restart() writes out a restart file at the current
time step. Put it at the end of a script to ensure that the system state is written out before exiting.












          

      

      

    

  

    
      
          
            
  
deprecated.init

Overview







	deprecated.init.create_random

	Generates N randomly positioned particles of the same type.



	deprecated.init.create_random_polymers

	Generates any number of randomly positioned polymers of configurable types.



	deprecated.init.read_xml

	## Reads initial system state from an XML file






Details

Deprecated initialization routines.


	
hoomd.deprecated.init.create_random(N, phi_p=None, name='A', min_dist=0.7, box=None, seed=1, dimensions=3)

	Generates N randomly positioned particles of the same type.


	Parameters

	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of particles to create.


	phi_p (float [https://docs.python.org/3/library/functions.html#float]) – Packing fraction of particles in the simulation box (unitless).


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the particle type to create.


	min_dist (float [https://docs.python.org/3/library/functions.html#float]) – Minimum distance particles will be separated by (in distance units).


	box (hoomd.data.boxdim) – Simulation box dimensions.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed.


	dimensions (int [https://docs.python.org/3/library/functions.html#int]) – The number of dimensions in the simulation.









Deprecated since version 2.0: Random initialization is best left to specific methods tailored by the user for their work.



Either phi_p or box must be specified. If phi_p is provided, it overrides the value of box.

Examples:

init.create_random(N=2400, phi_p=0.20)
init.create_random(N=2400, phi_p=0.40, min_dist=0.5)
system = init.create_random(N=2400, box=data.boxdim(L=20))





When phi_p is set, the
dimensions of the created box are such that the packing fraction
of particles in the box is phi_p. The number density e n
is related to the packing fraction by \(n = 2d/\pi \cdot \phi_P\),
where d is the dimension, and assumes the particles have a radius of 0.5.
All particles are created with the same type, given by name.

The result of hoomd.deprecated.init.create_random() can be saved in a variable and later used to read
and/or change particle properties later in the script. See hoomd.data for more information.






	
hoomd.deprecated.init.create_random_polymers(box, polymers, separation, seed=1)

	Generates any number of randomly positioned polymers of configurable types.


	Parameters

	
	box (hoomd.data.boxdim) – Simulation box dimensions


	polymers (list [https://docs.python.org/3/library/stdtypes.html#list]) – Specification for the different polymers to create (see below)


	separation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Separation radii for different particle types (see below)


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed to use









Deprecated since version 2.0: Random initialization is best left to specific methods tailored by the user for their work.



Any number of polymers can be generated, of the same or different types, as
specified in the argument polymers. Parameters for each polymer include
bond length, particle type list, bond list, and count.

The syntax is best shown by example. The below line specifies that 600 block copolymers
A6B7A6 with a bond length of 1.2 be generated:

polymer1 = dict(bond_len=1.2, type=['A']*6 + ['B']*7 + ['A']*6,
                bond="linear", count=600)





Here is an example for a second polymer, specifying just 100 polymers made of 5 B beads
bonded in a branched pattern:

polymer2 = dict(bond_len=1.2, type=['B']*5,
                bond=[(0, 1), (1,2), (1,3), (3,4)] , count=100)





The polymers argument can be given a list of any number of polymer types specified
as above. count randomly generated polymers of each type in the list will be
generated in the system.

In detail:


	bond_len defines the bond length of the generated polymers. This should
not necessarily be set to the equilibrium bond length! The generator is dumb and doesn’t know
that bonded particles can be placed closer together than the separation (see below). Thus
bond_len must be at a minimum set at twice the value of the largest separation radius. An
error will be generated if this is not the case.


	type is a python list of strings. Each string names a particle type in the order that
they will be created in generating the polymer.


	bond can be specified as “linear” in which case the generator connects all particles together
with bonds to form a linear chain. bond can also be given a list if python tuples (see example
above).
- Each tuple in the form of c (a,b) specifies that particle c a of the polymer be bonded to
particle c b. These bonds are given the default type name of ‘polymer’ to be used when specifying parameters to
bond forces such as bond.harmonic.
- A tuple with three elements (a,b,type) can be used as above, but with a custom name for the bond. For example,
a simple branched polymer with different bond types on each branch could be defined like so:

bond=[(0,1), (1,2), (2,3,'branchA'), (3,4,'branchA), (2,5,'branchB'), (5,6,'branchB')]









separation must contain one entry for each particle type specified in polymers
(‘A’ and ‘B’ in the examples above). The value given is the separation radius of each
particle of that type. The generated polymer system will have no two overlapping
particles.

Examples:

init.create_random_polymers(box=data.boxdim(L=35),
                            polymers=[polymer1, polymer2],
                            separation=dict(A=0.35, B=0.35));

init.create_random_polymers(box=data.boxdim(L=31),
                            polymers=[polymer1],
                            separation=dict(A=0.35, B=0.35), seed=52);

# create polymers in an orthorhombic box
init.create_random_polymers(box=data.boxdim(Lx=18,Ly=10,Lz=25),
                            polymers=[polymer2],
                            separation=dict(A=0.35, B=0.35), seed=12345);

# create a triclinic box with tilt factors xy=0.1 xz=0.2 yz=0.3
init.create_random_polymers(box=data.boxdim(L=18, xy=0.1, xz=0.2, yz=0.3),
                            polymers=[polymer2],
                            separation=dict(A=0.35, B=0.35));





With all other parameters the same, create_random_polymers will always create the
same system if seed is the same. Set a different seed (any integer) to create
a different random system with the same parameters. Note that different versions
of HOOMD e may generate different systems even with the same seed due to programming
changes.


Note

For relatively dense systems (packing fraction 0.4 and higher) the simple random
generation algorithm may fail to find room for all the particles and print an error message.
There are two methods to solve this. First, you can lower the separation radii allowing particles
to be placed closer together. Then setup integrate.nve with the limit option set to a
relatively small value. A few thousand time steps should relax the system so that the simulation can be
continued without the limit or with a different integrator. For extremely troublesome systems,
generate it at a very low density and shrink the box with the command update.box_resize
to the desired final size.




Note

The polymer generator always generates polymers as if there were linear chains. If you
provide a non-linear bond topology, the bonds in the initial configuration will be stretched
significantly. This normally doesn’t pose a problem for harmonic bonds (bond.harmonic) as
the system will simply relax over a few time steps, but can cause the system to blow up with FENE
bonds (bond.fene).








	
hoomd.deprecated.init.read_xml(filename, restart=None, time_step=None, wrap_coordinates=False)

	## Reads initial system state from an XML file


	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to read


	restart (str [https://docs.python.org/3/library/stdtypes.html#str]) – If it exists, read restart instead of filename.


	time_step (int [https://docs.python.org/3/library/functions.html#int]) – (if specified) Time step number to use instead of the one stored in the XML file


	wrap_coordinates (bool [https://docs.python.org/3/library/functions.html#bool]) – Wrap input coordinates back into the box









Deprecated since version 2.0: GSD is the new default file format for HOOMD-blue. It can store everything that an XML file can in
an efficient binary format that is easy to access. See hoomd.init.read_gsd.



Examples:

deprecated.init.read_xml(filename="data.xml")
deprecated.init.read_xml(filename="init.xml", restart="restart.xml")
deprecated.init.read_xml(filename="directory/data.xml")
deprecated.init.read_xml(filename="restart.xml", time_step=0)
system = deprecated.init.read_xml(filename="data.xml")





All particles, bonds, etc…  are read from the given XML file,
setting the initial condition of the simulation.
After this command completes, the system is initialized allowing
other commands in hoomd to be run.

For restartable jobs, specify the initial condition in filename and the restart file in restart.
init.read_xml will read the restart file if it exists, otherwise it will read filename.

All values are read in native units, see Units for more information.

If time_step is specified, its value will be used as the initial time
step of the simulation instead of the one read from the XML file.

If wrap_coordinates is set to True, input coordinates will be wrapped
into the box specified inside the XML file. If it is set to False, out-of-box
coordinates will result in an error.








          

      

      

    

  

    
      
          
            
  
jit

Details

JIT

The JIT module provides experimental support to to JIT (just in time) compile C++ code and call it during the
simulation. Compiled C++ code will execute at full performance unlike interpreted python code.

Stability

hoomd.jit is unstable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts may need to be updated. Maintainer: Joshua A. Anderson, University of Michigan


New in version 2.3.



Modules



	jit.external

	jit.patch








          

      

      

    

  

    
      
          
            
  
jit.external

Overview







	jit.external.user

	






Details


	
class hoomd.jit.external.user(mc, code=None, llvm_ir_file=None, clang_exec=None)

	Define an external field imposed on all particles in the system.


	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	llvm_ir_fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name of the llvm IR file to load.


	clang_exec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Clang executable to use








Potentials in jit.external behave similarly to external fields assigned via
hpmc.field.callback. Potentials added using external.user are added to the total
energy calculation in hpmc integrators. The
user external field takes C++ code, JIT compiles it at run time
and executes the code natively in the MC loop at with full performance. It
enables researchers to quickly and easily implement custom energetic
interactions without the need to modify and recompile HOOMD.

C++ code

Supply C++ code to the code argument and user will compile the code and call it to evaluate
forces. Compilation assumes that a recent clang installation is on your PATH. This is convenient
when the energy evaluation is simple or needs to be modified in python. More complex code (i.e. code that
requires auxiliary functions or initialization of static data arrays) should be compiled outside of HOOMD
and provided via the llvm_ir_file input (see below).

The text provided in code is the body of a function with the following signature:

float eval(const BoxDim& box,
unsigned int type_i,
const vec3<Scalar>& r_i,
const quat<Scalar>& q_i
Scalar diameter,
Scalar charge
)






	vec3 and quat are is defined in HOOMDMath.h.


	box is the system box.


	type_i is the particle type.


	r_i is the particle position


	q_i the particle orientation.


	diameter the particle diameter.


	charge the particle charge.


	Your code must return a value.




Once initialized, the following log quantities are provided to analyze.log:


	external_field_jit – total energy of the field




Example:

gravity = """return r_i.z + box.getL().z/2;"""
external = hoomd.jit.external.user(mc=mc, code=gravity)





LLVM IR code

You can compile outside of HOOMD and provide a direct link
to the LLVM IR file in llvm_ir_file. A compatible file contains an extern “C” eval function with this signature:

float eval(const BoxDim& box, unsigned int type_i, const vec3<Scalar>& r_i, const quat<Scalar>& q_i, Scalar diameter, Scalar charge)





vec3 and quat is defined in HOOMDMath.h.

Compile the file with clang: clang -O3 --std=c++11 -DHOOMD_LLVMJIT_BUILD -I /path/to/hoomd/include -S -emit-llvm code.cc to produce
the LLVM IR in code.ll.


New in version 2.5.




	
compile_user(code, clang_exec, fn=None)

	Helper function to compile the provided code into an executable


	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	clang_exec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Clang executable to use


	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – If provided, the code will be written to a file.









New in version 2.3.








	
disable()

	Disables the compute.

Examples:

c.disable()





Executing the disable command will remove the compute from the system. Any hoomd.run() command
executed after disabling a compute will not be able to log computed values with hoomd.analyze.log.

A disabled compute can be re-enabled with enable().






	
enable()

	Enables the compute.

Examples:

c.enable()





See disable().






	
restore_state()

	Restore the state information from the file used to initialize the simulations












          

      

      

    

  

    
      
          
            
  
jit.patch

Overview







	jit.patch.user

	Define an arbitrary patch energy.



	jit.patch.user_union

	Define an arbitrary patch energy on a union of particles






Details


	
class hoomd.jit.patch.user(mc, r_cut, array_size=1, code=None, llvm_ir_file=None, clang_exec=None)

	Define an arbitrary patch energy.


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Particle center to center distance cutoff beyond which all pair interactions are assumed 0.


	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	llvm_ir_fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name of the llvm IR file to load.


	clang_exec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Clang executable to use


	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements. (added in version 2.8)









	
alpha_iso

	Length array_size numpy array containing dynamically adjustable elements
defined by the user (added in version 2.8)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], float [https://docs.python.org/3/library/functions.html#float]









Patch energies define energetic interactions between pairs of shapes in hpmc integrators.
Shapes within a cutoff distance of r_cut are potentially interacting and the energy of interaction is a function
the type and orientation of the particles and the vector pointing from the i particle to the j particle center.

The user patch energy takes C++ code, JIT compiles it at run time and executes the code natively
in the MC loop with full performance. It enables researchers to quickly and easily implement custom energetic
interactions without the need to modify and recompile HOOMD. Additionally, user provides a mechanism,
through the alpha_iso attribute (numpy array), to adjust user defined potential parameters without the need
to recompile the patch energy code.

C++ code

Supply C++ code to the code argument and user will compile the code and call it to evaluate
patch energies. Compilation assumes that a recent clang installation is on your PATH. This is convenient
when the energy evaluation is simple or needs to be modified in python. More complex code (i.e. code that
requires auxiliary functions or initialization of static data arrays) should be compiled outside of HOOMD
and provided via the llvm_ir_file input (see below).

The text provided in code is the body of a function with the following signature:

float eval(const vec3<float>& r_ij,
           unsigned int type_i,
           const quat<float>& q_i,
           float d_i,
           float charge_i,
           unsigned int type_j,
           const quat<float>& q_j,
           float d_j,
           float charge_j)






	vec3 and quat are defined in HOOMDMath.h.


	r_ij is a vector pointing from the center of particle i to the center of particle j.


	type_i is the integer type of particle i


	q_i is the quaternion orientation of particle i


	d_i is the diameter of particle i


	charge_i is the charge of particle i


	type_j is the integer type of particle j


	q_j is the quaternion orientation of particle j


	d_j is the diameter of particle j


	charge_j is the charge of particle j


	Your code must return a value.


	When |r_ij| is greater than r_cut, the energy must be 0. This r_cut is applied between
the centers of the two particles: compute it accordingly based on the maximum range of the anisotropic
interaction that you implement.




Examples:

Static potential parameters

square_well = """float rsq = dot(r_ij, r_ij);
                    if (rsq < 1.21f)
                        return -1.0f;
                    else
                        return 0.0f;
              """
patch = hoomd.jit.patch.user(mc=mc, r_cut=1.1, code=square_well)
hoomd.run(1000)





Dynamic potential parameters

square_well = """float rsq = dot(r_ij, r_ij);
                 float r_cut = alpha_iso[0];
                    if (rsq < r_cut*r_cut)
                        return alpha_iso[1];
                    else
                        return 0.0f;
              """
patch = hoomd.jit.patch.user(mc=mc, r_cut=1.1, array_size=2, code=square_well)
patch.alpha_iso[:] = [1.1, 1.5] # [rcut, epsilon]
hoomd.run(1000)
patch.alpha_iso[1] = 2.0
hoomd.run(1000)





LLVM IR code

You can compile outside of HOOMD and provide a direct link
to the LLVM IR file in llvm_ir_file. A compatible file contains an extern “C” eval function with this signature:

float eval(const vec3<float>& r_ij,
           unsigned int type_i,
           const quat<float>& q_i,
           float d_i,
           float charge_i,
           unsigned int type_j,
           const quat<float>& q_j,
           float d_j,
           float charge_j)





vec3 and quat are defined in HOOMDMath.h.

Compile the file with clang: clang -O3 --std=c++11 -DHOOMD_LLVMJIT_BUILD -I /path/to/hoomd/include -S -emit-llvm code.cc to produce
the LLVM IR in code.ll.


New in version 2.3.




	
compile_user(array_size_iso, array_size_union, code, clang_exec, fn=None)

	Helper function to compile the provided code into an executable


	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	clang_exec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Clang executable to use


	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – If provided, the code will be written to a file.


	array_size_iso (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements for the isotropic part. (added in version 2.8)


	array_size_union (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements for unions of shapes. (added in version 2.8)









New in version 2.3.












	
class hoomd.jit.patch.user_union(mc, r_cut, array_size=1, code=None, llvm_ir_file=None, r_cut_iso=None, code_iso=None, llvm_ir_file_iso=None, array_size_iso=1, clang_exec=None)

	Define an arbitrary patch energy on a union of particles


	Parameters

	
	r_cut (float [https://docs.python.org/3/library/functions.html#float]) – Constituent particle center to center distance cutoff beyond which all pair interactions are assumed 0.


	r_cut_iso (float, optional) – Cut-off for isotropic interaction between centers of union particles


	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	code_iso (str, optional) – C++ code for isotropic part


	llvm_ir_fname (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name of the llvm IR file to load.


	llvm_ir_fname_iso (str, optional) – File name of the llvm IR file to load for isotropic interaction


	array_size (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements. (added in version 2.8)


	array_size_iso (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements for the isotropic part. (added in version 2.8)









	
alpha_union

	Length array_size numpy array containing dynamically adjustable elements
defined by the user for unions of shapes (added in version 2.8)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], float [https://docs.python.org/3/library/functions.html#float]










	
alpha_iso

	Length array_size_iso numpy array containing dynamically adjustable elements
defined by the user for the isotropic part. (added in version 2.8)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], float [https://docs.python.org/3/library/functions.html#float]









Example:

square_well = """float rsq = dot(r_ij, r_ij);
                    if (rsq < 1.21f)
                        return -1.0f;
                    else
                        return 0.0f;
              """
patch = hoomd.jit.patch.user_union(r_cut=1.1, code=square_well)
patch.set_params('A',positions=[(0,0,-5.),(0,0,.5)], typeids=[0,0])





Example with added isotropic interactions:

# square well attraction on constituent spheres
square_well = """float rsq = dot(r_ij, r_ij);
                      float r_cut = alpha_union[0];
                      if (rsq < r_cut*r_cut)
                          return alpha_union[1];
                      else
                          return 0.0f;
                   """

# soft repulsion between centers of unions
soft_repulsion = """float rsq = dot(r_ij, r_ij);
                          float r_cut = alpha_iso[0];
                          if (rsq < r_cut*r_cut)
                            return alpha_iso[1];
                          else
                            return 0.0f;
                 """

patch = hoomd.jit.patch.user_union(r_cut=2.5, code=square_well, array_size=2, \
                                   r_cut_iso=5, code_iso=soft_repulsion, array_size_iso=2)
patch.set_params('A',positions=[(0,0,-5.),(0,0,.5)], typeids=[0,0])
# [r_cut, epsilon]
patch.alpha_iso[:] = [2.5, 1.3];
patch.alpha_union[:] = [2.5, -1.7];






New in version 2.3.




	
compile_user(array_size_iso, array_size_union, code, clang_exec, fn=None)

	Helper function to compile the provided code into an executable


	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – C++ code to compile


	clang_exec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Clang executable to use


	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – If provided, the code will be written to a file.


	array_size_iso (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements for the isotropic part. (added in version 2.8)


	array_size_union (int [https://docs.python.org/3/library/functions.html#int]) – Size of array with adjustable elements for unions of shapes. (added in version 2.8)









New in version 2.3.














          

      

      

    

  

    
      
          
            
  
metal

Details

Metal potentials.

Stability

hoomd.metal is unstable. When upgrading from version 2.x to 2.y (y > x),
existing job scripts may need to be updated. Maintainer: Lin Yang, Alex Travesset, Iowa State University.

Modules



	metal.pair








          

      

      

    

  

    
      
          
            
  
metal.pair

Overview







	metal.pair.eam

	EAM pair potential.






Details

Metal pair potentials.


	
class hoomd.metal.pair.eam(file, type, nlist)

	EAM pair potential.


	Parameters

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name with potential tables in Alloy or FS format


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of file potential (‘Alloy’, ‘FS’)


	nlist (hoomd.md.nlist) – Neighbor list (default of None automatically creates a global cell-list based neighbor list)








eam specifies that a EAM (embedded atom method) pair potential should be applied between every
non-excluded particle pair in the simulation.

No coefficients need to be set for eam. All specifications, including the cutoff radius, form of the
potential, etc. are read in from the specified file.

Particle type names must match those referenced in the EAM potential file.

Particle mass (in atomic mass) must be set in the input script, users are allowed to set different mass values
other than those in the potential file.

Two file formats are supported: Alloy and FS. They are described in LAMMPS documentation
(commands eam/alloy and eam/fs) here: http://lammps.sandia.gov/doc/pair_eam.html
and are also described here: http://enpub.fulton.asu.edu/cms/potentials/submain/format.htm


Attention

EAM is NOT supported in MPI parallel simulations.



Example:

nl = nlist.cell()
eam = pair.eam(file='name.eam.fs', type='FS', nlist=nl)
eam = pair.eam(file='name.eam.alloy', type='Alloy', nlist=nl)






	
disable(log=False)

	Disable the force.


	Parameters

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if you plan to continue logging the potential energy associated with this force.





Examples:

force.disable()
force.disable(log=True)





Executing the disable command will remove the force from the simulation.
Any hoomd.run() command executed after disabling a force will not calculate or
use the force during the simulation. A disabled force can be re-enabled
with enable().

By setting log to True, the values of the force can be logged even though the forces are not applied
in the simulation.  For forces that use cutoff radii, setting log=True will cause the correct r_cut values
to be used throughout the simulation, and therefore possibly drive the neighbor list size larger than it
otherwise would be. If log is left False, the potential energy associated with this force will not be
available for logging.






	
enable()

	Enable the force.

Examples:

force.enable()





See disable().






	
get_energy(group)

	Get the energy of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the energy for.



	Returns

	The last computed energy for the members in the group.





Examples:

g = group.all()
energy = force.get_energy(g)










	
get_net_force(group)

	Get the force of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the force for.



	Returns

	The last computed force for the members in the group.





Examples

g = group.all()
force = force.get_net_force(g)






	
get_net_virial(group)

	Get the virial of a particle group.


	Parameters

	group (hoomd.group) – The particle group to query the virial for.



	Returns

	The last computed virial for the members in the group.





Examples

g = group.all()
virial = force.get_net_virial(g)












          

      

      

    

  

    
      
          
            
  
Deprecated features


v2.x

Commands and features deprecated in v2.x will be removed in v3.0.

hoomd:







	Feature

	Replace with





	Python 2.7

	Python >= 3.6



	static parameter in dump.gsd

	dynamic parameter



	set_params and other set_* methods

	Properties (under development)



	context.initialize

	New context API (under development)






hoomd.deprecated:







	Feature

	Replace with





	deprecated.analyze.msd

	Offline analysis: e.g. Freud’s msd module [https://freud.readthedocs.io].



	deprecated.dump.xml

	dump.gsd



	deprecated.dump.pos

	dump.gsd with on-demand conversion to .pos.



	deprecated.init.read_xml

	init.read_gsd



	deprecated.init.create_random

	mBuild [https://mosdef-hub.github.io/mbuild/], packmol [https://www.ime.unicamp.br/~martinez/packmol/userguide.shtml], or user script.



	deprecated.init.create_random_polymers

	mBuild [https://mosdef-hub.github.io/mbuild/], packmol [https://www.ime.unicamp.br/~martinez/packmol/userguide.shtml], or user script.






hoomd.hpmc:







	Feature

	Replace with





	ignore_overlaps parameter

	interaction_matrix



	sphere_union::max_members parameter

	no longer needed



	convex_polyhedron_union

	convex_spheropolyhedron_union, sweep_radius=0



	setup_pos_writer member

	n/a



	depletant_mode='circumsphere'

	no longer needed



	max_verts parameter

	no longer needed



	depletant_mode parameter

	no longer needed



	ntrial parameter

	no longer needed



	implicit boolean parameter

	set fugacity non-zero






hoomd.cgcmm:







	Feature

	Replace with





	cgcmm.angle.cgcmm

	no longer needed



	cgcmm.pair.cgcmm

	no longer needed










          

      

      

    

  

    
      
          
            
  
License

BSD 3-Clause License for HOOMD-blue

Copyright (c) 2009-2019 The Regents of the University of Michigan All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
   may be used to endorse or promote products derived from this software without
   specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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	hoomd c++ compilation helper script


	binary restart files


	integrate.mode_minimize_fire







Axel Kohlmeyer, David LeBard, Ben Levine, from the ICMS group at Temple University



	pair.cgcmm
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	Testing of angle.table and dihedral.table
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	metadata output
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	pair.reaction_field
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	pair.van_der_waals
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	integrate.npt_rigid
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	associated rigid body data structures and helper functions
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	Automatic citation list generator


	Neighbor list memory footprint reduction


	Bounding volume hierarchy (tree) neighbor lists


	Stenciled cell list (stencil) neighbor lists


	Per-type MPI ghost layer communication


	Dynamic load balancing


	Wall potentials extrapolated mode


	XML dump by particle group


	Fix references when disabling/enabling objects
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Paul Dodd, University of Michigan
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Erin Teich, University of Michigan
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	constrain.oneD


	Constant stress mode to integrate.npt.


	map_overlaps() in hpmc.


	Torque options to force.constant and force.active
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	Constant stress flow: hoomd.md.update.mueller_plathe_flow


	Matrix logging and hdf5 logging: hoomd.hdf5.log
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	Add Lennard-Jones 12-8 pair potential


	Add Buckingham/exp-6 pair potential


	Add special_pair Coulomb 1-4 scaling







Lin Yang, Alex Travesset, Iowa State University



	metal.pair.eam - reworked implementation
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	Documentation fixes
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	integrator.randomize_velocities()







Bradley Dice, Simon Adorf, University of Michigan



	SSAGES support
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	Documentation improvements
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	NVLINK optimized multi-GPU execution
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	get_net_force implementation


	bond bug fixes
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	pair.fourier
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	hoomd.md.dihedral.harmonic update for phase shift
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	Bug fixes.









HPMC developers

The following people contributed to the hoomd.hpmc package.

Joshua Anderson, University of Michigan - Lead developer



	Vision


	Initial design


	Code review


	NVT trial move processing (CPU / GPU)


	Sphere shape


	Polygon shape


	Spheropolygon shape


	Simple polygon shape


	Ellipsoid shape - adaptation of Michael’s Ellipsoid overlap check


	2D Xenocollide implementation


	2D GJKE implementation


	MPI parallel domain decomposition


	Scale distribution function pressure measurement


	POS writer integration


	Bounding box tree generation, query, and optimizations


	BVH implementation of trial move processing


	SSE and AVX intrinsics


	jit.patch.user user defined patchy interactions with LLVM runtime compiled code







Eric Irrgang, University of Michigan



	NPT updater


	Convex polyhedron shape


	Convex spheropolyhedron shape


	3D Xenocollide implementation
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	Shape union low-level implementation
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	Densest packing compressor (in collaboration with Eric Irrgang)


	POS file utilities (in collaboration with Eric Irrgang)
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	Ellipsoid overlap check bug fixes







Jens Glaser, University of Michigan



	Patchy sphere shape


	General polyhedron shape


	BVH implementation for countOverlaps


	Hybrid BVH/small box trial move processing


	Helped port the Sphinx overlap check


	Dynamic number of particle types support


	Implicit depletants


	jit.patch.user_union user defined patchy interactions with LLVM runtime compiled code


	Geometric Cluster Algorithm implementation


	convex_spheropolyhedron_union shape class


	test_overlap python API
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	Misc bug fixes to move size by particle type feature


	Initial code for MPI domain decomposition
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	External potential framework


	Wall overlap checks


	Lattice external potential




Erin Teich, University of Michigan


	Convex polyhedron union particle type







Vyas Ramasubramani, University of Michigan



	hpmc.util.tune fixes for tuning by type


	hpmc.update.boxmc fixes for non-orthorhombic box volume moves


	Fixed various bugs with wall overlap checks


	jit.external.user implementation


	Refactored depletant integrators
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	Patchy interaction support in HPMC CPU integrators


	GSD state bug fixes









DEM developers

The following people contributed to the hoomd.dem package.

Matthew Spellings, University of Michigan - Lead developer
Ryan Marson, University of Michigan



MPCD developers

The following people contributed to the hoomd.mpcd package.

Michael P. Howard, Princeton University & University of Texas at Austin - Lead developer



	Design
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	Particle and cell communication


	Basic streaming method


	Slit streaming method


	Slit pore streaming method


	SRD and AT collision rules


	Virtual particle filling framework


	External force framework and block, constant, and sine forces


	Bounce-back integrator framework









Source code

HOOMD: HOOMD-blue is a continuation of the HOOMD project (http://www.ameslab.gov/hoomd/). The code from the original project is used under the following license:

Highly Optimized Object-Oriented Molecular Dynamics (HOOMD) Open
Source Software License
Copyright (c) 2008 Ames Laboratory Iowa State University
All rights reserved.

Redistribution and use of HOOMD, in source and binary forms, with or
without modification, are permitted, provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names HOOMD's
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND
CONTRIBUTORS ``AS IS''  AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS  BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.





Sockets code from VMD is used for the IMDInterface to VMD (http://www.ks.uiuc.edu/Research/vmd/) - Used under the UIUC Open Source License.

Molfile plugin code from VMD is used for generic file format reading and writing - Used under the UIUC Open Source License:

University of Illinois Open Source License
Copyright 2006 Theoretical and Computational Biophysics Group,
All rights reserved.

Developed by: Theoretical and Computational Biophysics Group
              University of Illinois at Urbana-Champaign
              http://www.ks.uiuc.edu/

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

Neither the names of Theoretical and Computational Biophysics Group,
University of Illinois at Urbana-Champaign, nor the names of its contributors
may be used to endorse or promote products derived from this Software without
specific prior written permission.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS WITH THE SOFTWARE.





XML parsing is performed with XML.c from http://www.applied-mathematics.net/tools/xmlParser.html - Used under the BSD License:

Copyright (c) 2002, Frank Vanden Berghen<br>
All rights reserved.<br>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
 - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
 - Neither the name of the Frank Vanden Berghen nor the
      names of its contributors may be used to endorse or promote products
      derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





Saru is used for random number generation - Used under the following license:

Copyright (c) 2008 Steve Worley < m a t h g e e k@(my last name).com >

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.





Some CUDA API headers are included in the HOOMD-blue source code for code compatibility in CPU only builds - Used under the following license:

Copyright 1993-2008 NVIDIA Corporation.  All rights reserved.

NOTICE TO USER:

This source code is subject to NVIDIA ownership rights under U.S. and
international Copyright laws.  Users and possessors of this source code
are hereby granted a nonexclusive, royalty-free license to use this code
in individual and commercial software.

NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOURCE CODE.

U.S. Government End Users.   This source code is a "commercial item" as
that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of
"commercial computer  software"  and "commercial computer software
documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995)
and is provided to the U.S. Government only as a commercial end item.
Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
source code with only those rights set forth herein.

Any use of this source code in individual and commercial software must
include, in the user documentation and internal comments to the code,
the above Disclaimer and U.S. Government End Users Notice.





FFTs on the CPU reference implementation of PPPM are performed using kissFFT from http://sourceforge.net/projects/kissfft/,
used under the following license:

Copyright (c) 2003-2010 Mark Borgerding

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

* Neither the author nor the names of any contributors may be used to endorse or
promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





ModernGPU source code is embedded in HOOMD’s package and is used for various tasks: http://nvlabs.github.io/moderngpu/:

Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.
    * Neither the name of the NVIDIA CORPORATION nor the
    names of its contributors may be used to endorse or promote products
    derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





CUB 1.4.1 source code is embedded in HOOMD’s package and is used for various tasks: http://nvlabs.github.io/cub/:

Copyright (c) 2011, Duane Merrill.  All rights reserved.
Copyright (c) 2011-2015, NVIDIA CORPORATION.  All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of the NVIDIA CORPORATION nor the
      names of its contributors may be used to endorse or promote products
      derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





Eigen 3.2.5 (http://eigen.tuxfamily.org/) is embedded in HOOMD’s package and is made available under the
Mozilla Public License v.2.0 (http://mozilla.org/MPL/2.0/). Its linear algebra routines are used for dynamic load balancing. Source code is available through the [downloads](http://glotzerlab.engin.umich.edu/hoomd-blue/download.html).

A constrained least-squares problem is solved for dynamic load balancing using BVLSSolver, which is embedded
in HOOMD’s package and is made available under the following license:

Copyright (c) 2015, Michael P. Howard. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in the
       documentation and/or other materials provided with the distribution.

    3. Neither the name of the copyright holder nor the names of its
       contributors may be used to endorse or promote products derived from
       this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.





libgetar is used to read and write GTAR files. Used under the MIT license:

Copyright (c) 2014-2016 The Regents of the University of Michigan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





pybind11 is used to provide python bindings for C++ classes. Used under the BSD license:

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
   may be used to endorse or promote products derived from this software
   without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.





cereal is used to serialize C++ objects for transmission over MPI. Used under the BSD license:

Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of cereal nor the
      names of its contributors may be used to endorse or promote products
      derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





Random123 is used to generate random numbers and is used under the following license:

Copyright 2010-2012, D. E. Shaw Research.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
  notice, this list of conditions, and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions, and the following disclaimer in the
  documentation and/or other materials provided with the distribution.

* Neither the name of D. E. Shaw Research nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





A CUDA [neighbor](https://github.com/mphoward/neighbor) search library is
used under the Modified BSD license:

Copyright (c) 2018-2019, Michael P. Howard. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.







Libraries

HOOMD-blue links to the following libraries:



	python - Used under the Python license (http://www.python.org/psf/license/)


	cuFFT - Used under the NVIDIA CUDA toolkit license (http://docs.nvidia.com/cuda/eula/index.html)
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      	charge (hoomd.data.particle_data_proxy attribute)

      
        	(hoomd.data.SnapshotParticleData attribute)


      


      	charged() (in module hoomd.group)


      	close() (hoomd.dump.getar method)


      	clusters (class in hoomd.hpmc.update)


      	coeff (class in hoomd.md.angle)

      
        	(class in hoomd.md.bond)


        	(class in hoomd.md.dihedral)


        	(class in hoomd.md.external)


        	(class in hoomd.md.improper)


        	(class in hoomd.md.pair)


        	(class in hoomd.md.special_pair)


      


      	compile_user() (hoomd.jit.external.user method)

      
        	(hoomd.jit.patch.user method)


        	(hoomd.jit.patch.user_union method)


      


      	compute_energy() (hoomd.md.pair.ai_pair method)

      
        	(hoomd.md.pair.DLVO method)


        	(hoomd.md.pair.buckingham method)


        	(hoomd.md.pair.dipole method)


        	(hoomd.md.pair.dpd method)


        	(hoomd.md.pair.dpd_conservative method)


        	(hoomd.md.pair.dpdlj method)


        	(hoomd.md.pair.ewald method)


        	(hoomd.md.pair.force_shifted_lj method)


        	(hoomd.md.pair.fourier method)


        	(hoomd.md.pair.gauss method)


        	(hoomd.md.pair.gb method)


        	(hoomd.md.pair.lj method)


        	(hoomd.md.pair.lj1208 method)


        	(hoomd.md.pair.mie method)


        	(hoomd.md.pair.moliere method)


        	(hoomd.md.pair.morse method)


        	(hoomd.md.pair.pair method)


        	(hoomd.md.pair.reaction_field method)


        	(hoomd.md.pair.slj method)


        	(hoomd.md.pair.square_density method)


        	(hoomd.md.pair.tersoff method)


        	(hoomd.md.pair.yukawa method)


        	(hoomd.md.pair.zbl method)


      


  

  	
      	constant (class in hoomd.md.force)

      
        	(class in hoomd.mpcd.force)


      


      	constraint (hoomd.data.system_data attribute)


      	constraint_data_proxy (class in hoomd.data)


      	constraint_ellipsoid (class in hoomd.md.update)


      	convex_polygon (class in hoomd.hpmc.integrate)


      	convex_polyhedron (class in hoomd.hpmc.integrate)


      	convex_polyhedron_union (class in hoomd.hpmc.integrate)


      	convex_spheropolygon (class in hoomd.hpmc.integrate)


      	convex_spheropolyhedron (class in hoomd.hpmc.integrate)


      	convex_spheropolyhedron_union (class in hoomd.hpmc.integrate)


      	convexHull() (in module hoomd.dem.utils)


      	cosinesq (class in hoomd.md.angle)


      	coulomb (class in hoomd.md.special_pair)


      	count_overlaps() (hoomd.hpmc.field.wall method)

      
        	(hoomd.hpmc.integrate.mode_hpmc method)


      


      	create_bodies() (hoomd.md.constrain.rigid method)


      	create_lattice() (in module hoomd.init)


      	create_random() (in module hoomd.deprecated.init)


      	create_random_polymers() (in module hoomd.deprecated.init)


      	cuboid() (in module hoomd.group)


      	cuda_profile_start() (in module hoomd.util)


      	cuda_profile_stop() (in module hoomd.util)


      	cylinder (class in hoomd.md.wall)


  





D


  	
      	d (hoomd.data.constraint_data_proxy attribute)

      
        	(hoomd.data.dihedral_data_proxy attribute)


      


      	dcd (class in hoomd.dump)


      	decomposition (class in hoomd.comm)


      	del_cylinder() (hoomd.md.wall.group method)


      	del_plane() (hoomd.md.wall.group method)


      	del_sphere() (hoomd.md.wall.group method)


      	diameter (hoomd.data.particle_data_proxy attribute)

      
        	(hoomd.data.SnapshotParticleData attribute)


      


      	difference() (in module hoomd.group)


      	dihedral_data_proxy (class in hoomd.data)


      	dihedrals (hoomd.data.system_data attribute)


      	dipole (class in hoomd.md.force)

      
        	(class in hoomd.md.pair)


      


      	disable() (hoomd.analyze.callback method)

      
        	(hoomd.analyze.imd method)


        	(hoomd.analyze.log method)


        	(hoomd.cgcmm.angle.cgcmm method)


        	(hoomd.cgcmm.pair.cgcmm method)


        	(hoomd.compute.thermo method)


        	(hoomd.dem.pair.SWCA method)


        	(hoomd.dem.pair.WCA method)


        	(hoomd.deprecated.analyze.msd method)


        	(hoomd.deprecated.dump.pos method)


        	(hoomd.deprecated.dump.xml method)


        	(hoomd.dump.dcd method)


        	(hoomd.dump.getar method)


        	(hoomd.dump.gsd method)


        	(hoomd.hdf5.log method)


        	(hoomd.hpmc.analyze.sdf method)


        	(hoomd.hpmc.compute.free_volume method)


        	(hoomd.hpmc.field.callback method)


        	(hoomd.hpmc.field.external_field_composite method)


        	(hoomd.hpmc.field.frenkel_ladd_energy method)


        	(hoomd.hpmc.field.lattice_field method)


        	(hoomd.hpmc.field.wall method)


        	(hoomd.hpmc.update.boxmc method)


        	(hoomd.hpmc.update.clusters method)


        	(hoomd.hpmc.update.muvt method)


        	(hoomd.hpmc.update.remove_drift method)


        	(hoomd.hpmc.update.wall method)


        	(hoomd.jit.external.user method)


        	(hoomd.md.angle.cosinesq method)


        	(hoomd.md.angle.harmonic method)


        	(hoomd.md.angle.table method)


        	(hoomd.md.bond.fene method)


        	(hoomd.md.bond.harmonic method)


        	(hoomd.md.bond.table method)


        	(hoomd.md.charge.pppm method)


        	(hoomd.md.constrain.distance method)


        	(hoomd.md.constrain.oneD method)


        	(hoomd.md.constrain.rigid method)


        	(hoomd.md.constrain.sphere method)


        	(hoomd.md.dihedral.harmonic method)


        	(hoomd.md.dihedral.opls method)


        	(hoomd.md.dihedral.table method)


        	(hoomd.md.external.e_field method)


        	(hoomd.md.external.periodic method)


        	(hoomd.md.force.active method)


        	(hoomd.md.force.constant method)


        	(hoomd.md.force.dipole method)


        	(hoomd.md.improper.harmonic method)


        	(hoomd.md.integrate.berendsen method)


        	(hoomd.md.integrate.brownian method)


        	(hoomd.md.integrate.langevin method)


        	(hoomd.md.integrate.nph method)


        	(hoomd.md.integrate.npt method)


        	(hoomd.md.integrate.nve method)


        	(hoomd.md.integrate.nvt method)


        	(hoomd.md.pair.DLVO method)


        	(hoomd.md.pair.ai_pair method)


        	(hoomd.md.pair.buckingham method)


        	(hoomd.md.pair.dipole method)


        	(hoomd.md.pair.dpd method)


        	(hoomd.md.pair.dpd_conservative method)


        	(hoomd.md.pair.dpdlj method)


        	(hoomd.md.pair.ewald method)


        	(hoomd.md.pair.force_shifted_lj method)


        	(hoomd.md.pair.fourier method)


        	(hoomd.md.pair.gauss method)


        	(hoomd.md.pair.gb method)


        	(hoomd.md.pair.lj method)


        	(hoomd.md.pair.lj1208 method)


        	(hoomd.md.pair.mie method)


        	(hoomd.md.pair.moliere method)


        	(hoomd.md.pair.morse method)


        	(hoomd.md.pair.pair method)


        	(hoomd.md.pair.reaction_field method)


        	(hoomd.md.pair.slj method)


        	(hoomd.md.pair.square_density method)


        	(hoomd.md.pair.table method)


        	(hoomd.md.pair.tersoff method)


        	(hoomd.md.pair.yukawa method)


        	(hoomd.md.pair.zbl method)


        	(hoomd.md.special_pair.coulomb method)


        	(hoomd.md.special_pair.lj method)


        	(hoomd.md.update.constraint_ellipsoid method)


        	(hoomd.md.update.enforce2d method)


        	(hoomd.md.update.mueller_plathe_flow method)


        	(hoomd.md.update.rescale_temp method)


        	(hoomd.md.update.zero_momentum method)


        	(hoomd.md.wall.force_shifted_lj method)


        	(hoomd.md.wall.gauss method)


        	(hoomd.md.wall.lj method)


        	(hoomd.md.wall.mie method)


        	(hoomd.md.wall.morse method)


        	(hoomd.md.wall.slj method)


        	(hoomd.md.wall.wallpotential method)


        	(hoomd.md.wall.yukawa method)


        	(hoomd.metal.pair.eam method)


        	(hoomd.mpcd.collide.at method)


        	(hoomd.mpcd.collide.srd method)


        	(hoomd.mpcd.integrate.slit method)


        	(hoomd.mpcd.integrate.slit_pore method)


        	(hoomd.mpcd.stream.bulk method)


        	(hoomd.mpcd.stream.slit method)


        	(hoomd.mpcd.stream.slit_pore method)


        	(hoomd.update.balance method)


        	(hoomd.update.box_resize method)


        	(hoomd.update.sort method)


      


  

  	
      	distance (class in hoomd.md.constrain)


      	DLVO (class in hoomd.md.pair)


      	dpd (class in hoomd.md.pair)


      	dpd_conservative (class in hoomd.md.pair)


      	dpdlj (class in hoomd.md.pair)


      	dump_metadata() (in module hoomd.meta)


      	dump_shape() (hoomd.dump.gsd method)


      	dump_state() (hoomd.dump.gsd method)


  





E


  	
      	e_field (class in hoomd.md.external)


      	eam (class in hoomd.metal.pair)


      	ellipsoid (class in hoomd.hpmc.integrate)


      	embed() (hoomd.mpcd.collide.at method)

      
        	(hoomd.mpcd.collide.srd method)


      


      	enable() (hoomd.analyze.callback method)

      
        	(hoomd.analyze.imd method)


        	(hoomd.analyze.log method)


        	(hoomd.cgcmm.angle.cgcmm method)


        	(hoomd.cgcmm.pair.cgcmm method)


        	(hoomd.compute.thermo method)


        	(hoomd.dem.pair.SWCA method)


        	(hoomd.dem.pair.WCA method)


        	(hoomd.deprecated.analyze.msd method)


        	(hoomd.deprecated.dump.pos method)


        	(hoomd.deprecated.dump.xml method)


        	(hoomd.dump.dcd method)


        	(hoomd.dump.getar method)


        	(hoomd.dump.gsd method)


        	(hoomd.hdf5.log method)


        	(hoomd.hpmc.analyze.sdf method)


        	(hoomd.hpmc.compute.free_volume method)


        	(hoomd.hpmc.field.callback method)


        	(hoomd.hpmc.field.external_field_composite method)


        	(hoomd.hpmc.field.frenkel_ladd_energy method)


        	(hoomd.hpmc.field.lattice_field method)


        	(hoomd.hpmc.field.wall method)


        	(hoomd.hpmc.update.boxmc method)


        	(hoomd.hpmc.update.clusters method)


        	(hoomd.hpmc.update.muvt method)


        	(hoomd.hpmc.update.remove_drift method)


        	(hoomd.hpmc.update.wall method)


        	(hoomd.jit.external.user method)


        	(hoomd.md.angle.cosinesq method)


        	(hoomd.md.angle.harmonic method)


        	(hoomd.md.angle.table method)


        	(hoomd.md.bond.fene method)


        	(hoomd.md.bond.harmonic method)


        	(hoomd.md.bond.table method)


        	(hoomd.md.charge.pppm method)


        	(hoomd.md.constrain.distance method)


        	(hoomd.md.constrain.oneD method)


        	(hoomd.md.constrain.rigid method)


        	(hoomd.md.constrain.sphere method)


        	(hoomd.md.dihedral.harmonic method)


        	(hoomd.md.dihedral.opls method)


        	(hoomd.md.dihedral.table method)


        	(hoomd.md.external.e_field method)


        	(hoomd.md.external.periodic method)


        	(hoomd.md.force.active method)


        	(hoomd.md.force.constant method)


        	(hoomd.md.force.dipole method)


        	(hoomd.md.improper.harmonic method)


        	(hoomd.md.integrate.berendsen method)


        	(hoomd.md.integrate.brownian method)


        	(hoomd.md.integrate.langevin method)


        	(hoomd.md.integrate.nph method)


        	(hoomd.md.integrate.npt method)


        	(hoomd.md.integrate.nve method)


        	(hoomd.md.integrate.nvt method)


        	(hoomd.md.pair.DLVO method)


        	(hoomd.md.pair.ai_pair method)


        	(hoomd.md.pair.buckingham method)


        	(hoomd.md.pair.dipole method)


        	(hoomd.md.pair.dpd method)


        	(hoomd.md.pair.dpd_conservative method)


        	(hoomd.md.pair.dpdlj method)


        	(hoomd.md.pair.ewald method)


        	(hoomd.md.pair.force_shifted_lj method)


        	(hoomd.md.pair.fourier method)


        	(hoomd.md.pair.gauss method)


        	(hoomd.md.pair.gb method)


        	(hoomd.md.pair.lj method)


        	(hoomd.md.pair.lj1208 method)


        	(hoomd.md.pair.mie method)


        	(hoomd.md.pair.moliere method)


        	(hoomd.md.pair.morse method)


        	(hoomd.md.pair.pair method)


        	(hoomd.md.pair.reaction_field method)


        	(hoomd.md.pair.slj method)


        	(hoomd.md.pair.square_density method)


        	(hoomd.md.pair.table method)


        	(hoomd.md.pair.tersoff method)


        	(hoomd.md.pair.yukawa method)


        	(hoomd.md.pair.zbl method)


        	(hoomd.md.special_pair.coulomb method)


        	(hoomd.md.special_pair.lj method)


        	(hoomd.md.update.constraint_ellipsoid method)


        	(hoomd.md.update.enforce2d method)


        	(hoomd.md.update.mueller_plathe_flow method)


        	(hoomd.md.update.rescale_temp method)


        	(hoomd.md.update.zero_momentum method)


        	(hoomd.md.wall.force_shifted_lj method)


        	(hoomd.md.wall.gauss method)


        	(hoomd.md.wall.lj method)


        	(hoomd.md.wall.mie method)


        	(hoomd.md.wall.morse method)


        	(hoomd.md.wall.slj method)


        	(hoomd.md.wall.wallpotential method)


        	(hoomd.md.wall.yukawa method)


        	(hoomd.metal.pair.eam method)


        	(hoomd.mpcd.collide.at method)


        	(hoomd.mpcd.collide.srd method)


        	(hoomd.mpcd.integrate.slit method)


        	(hoomd.mpcd.integrate.slit_pore method)


        	(hoomd.mpcd.stream.bulk method)


        	(hoomd.mpcd.stream.slit method)


        	(hoomd.mpcd.stream.slit_pore method)


        	(hoomd.update.balance method)


        	(hoomd.update.box_resize method)


        	(hoomd.update.sort method)


      


  

  	
      	energy (hoomd.data.force_data_proxy attribute)


      	enforce2d (class in hoomd.md.update)


      	ewald (class in hoomd.md.pair)


      	external_field_composite (class in hoomd.hpmc.field)


  





F


  	
      	faceted_ellipsoid (class in hoomd.hpmc.integrate)


      	faceted_ellipsoid_union (class in hoomd.hpmc.integrate)


      	faceted_sphere (class in hoomd.hpmc.integrate)


      	fcc() (in module hoomd.lattice)


      	fene (class in hoomd.md.bond)


      	File (class in hoomd.hdf5)


      	floppy() (in module hoomd.group)


  

  	
      	force (hoomd.data.force_data_proxy attribute)


      	force_data_proxy (class in hoomd.data)


      	force_shifted_lj (class in hoomd.md.pair)

      
        	(class in hoomd.md.wall)


      


      	force_update() (hoomd.group.group method)


      	fourier (class in hoomd.md.pair)


      	free_volume (class in hoomd.hpmc.compute)


      	frenkel_ladd_energy (class in hoomd.hpmc.field)


  





G


  	
      	gauss (class in hoomd.md.pair)

      
        	(class in hoomd.md.wall)


      


      	gb (class in hoomd.md.pair)


      	get_a() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_accepted_count() (hoomd.hpmc.update.wall method)


      	get_aspect_acceptance() (hoomd.hpmc.update.boxmc method)


      	get_average_energy() (hoomd.hpmc.field.lattice_field method)


      	get_configurational_bias_ratio() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_counters() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_curr_box() (hoomd.hpmc.field.wall method)


      	get_cylinder_wall_param() (hoomd.hpmc.field.wall method)


      	get_d() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_depletant_type() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_energy() (hoomd.cgcmm.angle.cgcmm method)

      
        	(hoomd.cgcmm.pair.cgcmm method)


        	(hoomd.dem.pair.SWCA method)


        	(hoomd.dem.pair.WCA method)


        	(hoomd.hpmc.field.lattice_field method)


        	(hoomd.md.angle.cosinesq method)


        	(hoomd.md.angle.harmonic method)


        	(hoomd.md.angle.table method)


        	(hoomd.md.bond.fene method)


        	(hoomd.md.bond.harmonic method)


        	(hoomd.md.bond.table method)


        	(hoomd.md.charge.pppm method)


        	(hoomd.md.dihedral.harmonic method)


        	(hoomd.md.dihedral.opls method)


        	(hoomd.md.dihedral.table method)


        	(hoomd.md.external.e_field method)


        	(hoomd.md.external.periodic method)


        	(hoomd.md.force.active method)


        	(hoomd.md.force.constant method)


        	(hoomd.md.force.dipole method)


        	(hoomd.md.improper.harmonic method)


        	(hoomd.md.integrate.mode_minimize_fire method)


        	(hoomd.md.pair.DLVO method)


        	(hoomd.md.pair.ai_pair method)


        	(hoomd.md.pair.buckingham method)


        	(hoomd.md.pair.dipole method)


        	(hoomd.md.pair.dpd method)


        	(hoomd.md.pair.dpd_conservative method)


        	(hoomd.md.pair.dpdlj method)


        	(hoomd.md.pair.ewald method)


        	(hoomd.md.pair.force_shifted_lj method)


        	(hoomd.md.pair.fourier method)


        	(hoomd.md.pair.gauss method)


        	(hoomd.md.pair.gb method)


        	(hoomd.md.pair.lj method)


        	(hoomd.md.pair.lj1208 method)


        	(hoomd.md.pair.mie method)


        	(hoomd.md.pair.moliere method)


        	(hoomd.md.pair.morse method)


        	(hoomd.md.pair.pair method)


        	(hoomd.md.pair.reaction_field method)


        	(hoomd.md.pair.slj method)


        	(hoomd.md.pair.square_density method)


        	(hoomd.md.pair.table method)


        	(hoomd.md.pair.tersoff method)


        	(hoomd.md.pair.yukawa method)


        	(hoomd.md.pair.zbl method)


        	(hoomd.md.special_pair.coulomb method)


        	(hoomd.md.special_pair.lj method)


        	(hoomd.md.wall.force_shifted_lj method)


        	(hoomd.md.wall.gauss method)


        	(hoomd.md.wall.lj method)


        	(hoomd.md.wall.mie method)


        	(hoomd.md.wall.morse method)


        	(hoomd.md.wall.slj method)


        	(hoomd.md.wall.wallpotential method)


        	(hoomd.md.wall.yukawa method)


        	(hoomd.metal.pair.eam method)


      


      	get_flow_epsilon() (hoomd.md.update.mueller_plathe_flow method)


      	get_lattice_vector() (hoomd.data.boxdim method)


      	get_ln_volume_acceptance() (hoomd.hpmc.update.boxmc method)


      	get_max_slab() (hoomd.md.update.mueller_plathe_flow method)


      	get_min_slab() (hoomd.md.update.mueller_plathe_flow method)


      	get_move_ratio() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_mps() (hoomd.hpmc.integrate.mode_hpmc method)


      	get_n_slabs() (hoomd.md.update.mueller_plathe_flow method)


      	get_net_force() (hoomd.cgcmm.angle.cgcmm method)

      
        	(hoomd.cgcmm.pair.cgcmm method)


        	(hoomd.dem.pair.SWCA method)


        	(hoomd.dem.pair.WCA method)


        	(hoomd.md.angle.cosinesq method)


        	(hoomd.md.angle.harmonic method)


        	(hoomd.md.angle.table method)


        	(hoomd.md.bond.fene method)


        	(hoomd.md.bond.harmonic method)


        	(hoomd.md.bond.table method)


        	(hoomd.md.charge.pppm method)


        	(hoomd.md.dihedral.harmonic method)


        	(hoomd.md.dihedral.opls method)


        	(hoomd.md.dihedral.table method)


        	(hoomd.md.external.e_field method)


        	(hoomd.md.external.periodic method)


        	(hoomd.md.force.active method)


        	(hoomd.md.force.constant method)


        	(hoomd.md.force.dipole method)


        	(hoomd.md.improper.harmonic method)


        	(hoomd.md.pair.DLVO method)


        	(hoomd.md.pair.ai_pair method)


        	(hoomd.md.pair.buckingham method)


        	(hoomd.md.pair.dipole method)


        	(hoomd.md.pair.dpd method)


        	(hoomd.md.pair.dpd_conservative method)


        	(hoomd.md.pair.dpdlj method)


        	(hoomd.md.pair.ewald method)


        	(hoomd.md.pair.force_shifted_lj method)


        	(hoomd.md.pair.fourier method)


        	(hoomd.md.pair.gauss method)


        	(hoomd.md.pair.gb method)


        	(hoomd.md.pair.lj method)


        	(hoomd.md.pair.lj1208 method)


        	(hoomd.md.pair.mie method)


        	(hoomd.md.pair.moliere method)


        	(hoomd.md.pair.morse method)


        	(hoomd.md.pair.pair method)


        	(hoomd.md.pair.reaction_field method)


        	(hoomd.md.pair.slj method)


        	(hoomd.md.pair.square_density method)


        	(hoomd.md.pair.table method)


        	(hoomd.md.pair.tersoff method)


        	(hoomd.md.pair.yukawa method)


        	(hoomd.md.pair.zbl method)


        	(hoomd.md.special_pair.coulomb method)


        	(hoomd.md.special_pair.lj method)


        	(hoomd.md.wall.force_shifted_lj method)


        	(hoomd.md.wall.gauss method)


        	(hoomd.md.wall.lj method)


        	(hoomd.md.wall.mie method)


        	(hoomd.md.wall.morse method)
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